

A GENTLE INTRODUCTION TO CLONES, THEIR GALOIS THEORY, AND APPLICATIONS

Mike Behrisch

Bath, UK, 1 March 2013

Outline

- Operations, relations and clones
- 2 Fundamental Galois connection of clone theory
- Classical structural results

4 Applications

Vocabulary

- an algebra A = ⟨A; F⟩ = a set with finitary operations (≈ an algebra for a certain monad)
- an algebra may have a signature or not
- signature = a set of operation symbols + a function assigning arities to them
- variety = equational theory, a class of algebras of the same signature, fulfilling a given set of identities
- *n*-ary term = an element of the free algebra with *n* generators in the category of all algebras of a given signature

• *n*-ary term op of \mathbf{A} = an element of the free algebra with $n_{\text{TU Dresder}}$ generators in the variety generated by \mathbf{A} . slide 3 of 41

Outline

- 1 Operations, relations and clones
 - 2 Fundamental Galois connection of clone theory
- 3 Classical structural results

4 Applications

Assumptions

- Everything in *Set*!!!
- functions: $A, B \in Set \quad f: A \longrightarrow B$
- $B^A := Set(A, B)$
- natural numbers $\mathbb{N} = \{0, 1, 2, \ldots\}$
- $n = \{0, \ldots, n-1\}$ for $n \in \mathbb{N}$

Finitary operations

Let A be a set, $n \in \mathbb{N}$ an integer, called arity.

•
$$f: A^{n} \longrightarrow A$$
$$(x_{0}, \dots, x_{n-1}) \longmapsto f(x_{0}, \dots, x_{n-1})$$
n-ary function (operation) on *A*
•
$$O_{A}^{(n)} := A^{A^{n}} \text{ set of all } n\text{-ary operations}$$

• set of all finitary operations
$$O_{A} := \bigcup_{k \in \mathbb{N}} O_{A}^{(k)} = \{f: A^{k} \longrightarrow A \mid k \in \mathbb{N}\}$$

Special (trivial) operations

• projections for $n \in \mathbb{N}_+$, and $0 \le i < n$

$$e_i^{(n)}: A^n \longrightarrow A$$

 $(x_0, \dots, x_{n-1}) \longmapsto x_i$

• set of all projections $J_A := \left\{ e_i^{(k)} \mid k \in \mathbb{N}, 0 \le i < k \right\}$

TU Dresden

For
$$n, k \in \mathbb{N}$$
 $f \in O_A^{(n)}$ and $(g_0, \ldots, g_{n-1}) \in \left(O_A^{(k)}\right)^n$:

For
$$n, k \in \mathbb{N}$$
 $f \in O_A^{(n)}$ and $(g_0, \ldots, g_{n-1}) \in (O_A^{(k)})^n$:

Input: $(a_0,\ldots,a_{n-1})\in A^n$

For
$$n, k \in \mathbb{N}$$
 $f \in O_A^{(n)}$ and $(g_0, \ldots, g_{n-1}) \in (O_A^{(k)})^n$:

Output: $f(a_0, \ldots, a_{n-1}) \in A$

For
$$n, k \in \mathbb{N}$$
 $f \in O_A^{(n)}$ and $(g_0, \dots, g_{n-1}) \in (O_A^{(k)})^n$:
Output: $f(\overset{g_0}{a_0}, \dots, \overset{g_{n-1}}{a_{n-1}}) \in A$

For
$$n, k \in \mathbb{N}$$
 $f \in O_A^{(n)}$ and $(g_0, \dots, g_{n-1}) \in (O_A^{(k)})^n$:
 $f \circ \langle g_0, \dots, g_{n-1} \rangle : A^k \longrightarrow A$
 $\mathbf{a} = (a_0, \dots, a_{k-1}) \longmapsto f(g_0(\mathbf{a}), \dots, g_{n-1}(\mathbf{a}))$

Composition illustrated

Composition illustrated

Composition illustrated

Clones Definition () $F \subseteq O_A$ (conrete) clone (of operations) on A iff \bigcirc $J_A \subseteq F$ \bigcirc F is closed w.r.t. composition

Clones

Definition (historically $F \subseteq O_A \setminus O_A^{(0)}$)

$F \subseteq O_A$ (conrete) clone (of operations) on A iff

- P is closed w.r.t. composition

Clones

Definition (historically $F \subseteq O_A \setminus O_A^{(0)}$)

- $F \subseteq O_A$ (conrete) clone (of operations) on A iff

 - P is closed w.r.t. composition
 - J_A clone of all projections
 - O_A clone of all operations

Examples of clones (I)

- $O^{c}_{(A,\tau)}$ continuous functions of a topological space (A, τ)
- $O^m_{(A,\Sigma)}$ measurable functions of a measurable space (A, Σ)
- O^h_(A,F) all homomorphisms from direct powers of an algebra (A, F) to itself.
- Pick an object A in a familiar concrete category C having finite powers and forgetful functor U: C → Set.
 Consider { U(f) | f ∈ C (Aⁿ, A), n ∈ N}

Prototypical construction (I)

Lemma

 $(C, U: C \longrightarrow Set)$ concrete category over Set, having finite products preserved by U, $A \in C$, then

$$\mathsf{O}_{A}^{\mathcal{C}} := \bigcup_{n \in \mathbb{N}} \left\{ U(f) \mid f \in \mathcal{C}(A^{n}, A) \right\}$$

is a clone, the clone over A. Every clone can be given this way.

TU Dresden

Examples of clones (II)

- *F* ⊆ O_A → close *F* ∪ J_A w.r.t. composition (clones form closure system).
- $\mathbf{A} = \langle A; F \rangle \rightsquigarrow$ compute all term operations of \mathbf{A} .

•
$$A = \{0, 1\}, F = \{\min\},$$

 $\rightsquigarrow \operatorname{Clo}(\mathbf{A}) =$

$$\begin{cases}
(a_0, \dots, a_{n-1}) \mapsto \min\{a_i \mid i \in I\} \\ n \in \mathbb{N}_+
\end{cases} | \emptyset \neq I \subseteq \{0, \dots, n-1\}, \\
n \in \mathbb{N}_+
\end{cases}$$
• $A = \{0, 1\} F = \{f\}, f(x) = 1 + x \mod 2.$
 $\operatorname{Clo}(\mathbf{A}) = J_A \cup \{(a_0, \dots, a_{n-1}) \mapsto f(a_i) \mid 0 \le i < n, n \in \mathbb{N}_+\}$
• $A = \{0, 1\} F = \{f, f(x) = 1 + x \mod 2.$
 $\operatorname{Clo}(\mathbf{A}) = J_A \cup \{(a_0, \dots, a_{n-1}) \mapsto f(a_i) \mid 0 \le i < n, n \in \mathbb{N}_+\}$
• $A = \{0, 1\} F = \{f, \min_{0 \in \text{dones, GaloOthedry & applications}} (\mathbf{A}) = O_A$
 $\int_{\text{Dresden}} f(x) = 1 + x \mod 2.$
 $\int_$

Prototypical construction (II)

 $\mathbf{A} = \langle A; F \rangle$, where $F \subseteq O_A$; $f \in F$ function \leftrightarrow symbol \rightsquigarrow canonical signature $\rightsquigarrow \mathcal{V}$ equational theory generated by \mathbf{A} $\rightsquigarrow \operatorname{Clo}(\mathbf{A})$ all term op's in this signature (= $\bigcup_{n \in \mathbb{N}} \mathcal{F}_{\mathcal{V}}(n)$)

Proposition

For every algebra $\mathbf{A} = \langle A; F \rangle$ its set of term operations Clo (**A**) forms a clone. Every clone $F \subseteq O_A$ is the set of term operations of some algebra, namely that of $\mathbf{A} = \langle A; F \rangle$.

Importance of clones (for universal algebra)

- Goal of universal algebra: study structures A = ⟨A; F⟩, where F ⊆ O_A. (difficult)
- Important properties of algebras only depend on Clo (A), not on F (e.g. substructures, homomorphisms, congruences, ...).
- In principle, study of $\langle A; F \rangle$ such that F clone suffices

Examples of clones (III)

Let A be a set, $a \in A$ and $U \subseteq A$.

- $T_a := \{ f \in O_A \mid f(a, \dots, a) = a \}$ a-preserving operations
- $F_U := \{ f \in O_A \mid f[U^{\operatorname{ar} f}] \subseteq U \}$ *U*-preserving operations
- $\bigcap_{a \in A} T_a$ clone of all idempotent op's ($f(x, ..., x) \approx x$)
- $\bigcap_{U \subset A} F_U$ clone of all conservative op's $(f(x_0, ..., x_{n-1}) \in \{x_0, ..., x_{n-1}\})$
- All monotone operations w.r.t. an order \leq on A:

• All operations preserving every member of a given set of finitary relations on *A*.

TU Dresden

Prototypical construction (III)

Lemma

Every set of operations described by preserving each relation of a given set of finitary relations on A forms a clone on A.

Question

Which clones arise in this way?

Outline

- Operations, relations and clones
- 2 Fundamental Galois connection of clone theory
- 3 Classical structural results

Applications

Finitary relations

- For $m \in \mathbb{N}$ subsets $\varrho \subseteq A^m$ are *m*-ary relations on A
- Elements $(x_0, \ldots, x_{m-1}) \in \varrho$ also interpretable as $x: m \longrightarrow A$
- $\mathsf{R}^{(m)}_A := \mathcal{P}(A^m)$ set of *m*-ary relations on *A*
- $R_A := \bigcup_{m \in \mathbb{N}} R_A^{(m)}$ set of all finitary relations on A

$$m, n \in \mathbb{N}, f \in O_A^{(n)}, \varrho \in \mathsf{R}_A^{(m)}$$
$$\begin{array}{ccc} x_{0,0} & \cdots & x_{0,n-1} \\ \vdots & \ddots & \vdots \\ x_{m-1,0} & \cdots & x_{m-1,n-1} \end{array}$$

$$m, n \in \mathbb{N}, f \in O_A^{(n)}, \varrho \in \mathsf{R}_A^{(m)}$$
$$\begin{array}{cccc} x_{0,0} & \cdots & x_{0,n-1} \\ \vdots & \ddots & \vdots \\ x_{m-1,0} & \cdots & x_{m-1,n-1} \\ \in \varrho & \cdots & \in \varrho \end{array}$$

$$m, n \in \mathbb{N}, f \in O_A^{(n)}, \varrho \in \mathsf{R}_A^{(m)}$$

$$f(\begin{array}{ccc} x_{0,0} & \cdots & x_{0,n-1} \end{array})$$

$$\vdots & \ddots & \vdots$$

$$f(\begin{array}{ccc} x_{m-1,0} & \cdots & x_{m-1,n-1} \end{array})$$

$$\in \varrho & \cdots & \in \varrho$$

$$m, n \in \mathbb{N}, f \in O_{A}^{(n)}, \varrho \in \mathsf{R}_{A}^{(m)}$$

$$f(\begin{array}{ccc} x_{0,0} & \cdots & x_{0,n-1} \end{array}) = \\ \vdots & \ddots & \vdots \\ f(\begin{array}{ccc} x_{m-1,0} & \cdots & x_{m-1,n-1} \end{array}) = \\ \in \varrho & \cdots & \in \varrho \end{array}$$

$$m, n \in \mathbb{N}, f \in \mathcal{O}_{A}^{(n)}, \varrho \in \mathcal{R}_{A}^{(m)}$$

$$f(\begin{array}{cccc} x_{0,0} & \cdots & x_{0,n-1} \end{array}) = y_{0}$$

$$\vdots & \ddots & \vdots & & \vdots \\ f(\begin{array}{cccc} x_{m-1,0} & \cdots & x_{m-1,n-1} \end{array}) = y_{m-1}$$

$$\in \varrho & \cdots & \in \varrho$$

$$m, n \in \mathbb{N}, f \in \mathcal{O}_{A}^{(n)}, \varrho \in \mathcal{R}_{A}^{(m)}$$

$$f(\begin{array}{cccc} x_{0,0} & \cdots & x_{0,n-1} \end{array}) = y_{0}$$

$$\vdots & \ddots & \vdots & & \vdots \\ f(\begin{array}{cccc} x_{m-1,0} & \cdots & x_{m-1,n-1} \end{array}) = y_{m-1}$$

$$\in \varrho & \cdots & \in \varrho \qquad \qquad \in \varrho$$

$$m, n \in \mathbb{N}, f \in O_A^{(n)}, \varrho \in \mathsf{R}_A^{(m)}$$

$$f(\begin{array}{cccc} x_{0,0} & \cdots & x_{0,n-1} \end{array}) = y_0$$

$$\vdots & \ddots & \vdots & & \vdots \\ f(\begin{array}{cccc} x_{m-1,0} & \cdots & x_{m-1,n-1} \end{array}) = y_{m-1}$$

$$\in \varrho & \cdots & \in \varrho \qquad \qquad \in \varrho$$

Truth of this condition: $f \triangleright \varrho$

One way to understand preservation Let $m, n \in \mathbb{N}$, $f \in O_A^{(n)}$, $\varrho \in \mathsf{R}_A^{(m)}$. $f \triangleright \varrho \iff \forall r_0, \dots, r_{n-1} \in \varrho: f \circ \langle r_0, \dots, r_{n-1} \rangle \in \varrho$

Intro to clones, Galois theory & applications

Polymorphisms and invariant relations

For $F \subseteq O_A$ and $Q \subseteq R_A$:

$$\begin{aligned} \mathsf{Inv}\,\langle A;F\rangle &:= \mathsf{Inv}_A F := \{ \,\varrho \in \mathsf{R}_A \mid \forall f \in F : \quad f \rhd \varrho \} \\ \mathsf{Pol}\,\langle A;Q\rangle &:= \mathsf{Pol}_A \, Q := \{ \,f \in \mathsf{O}_A \mid \forall \varrho \in Q : \quad f \rhd \varrho \} \end{aligned}$$

closure operators

 $F \mapsto \operatorname{Pol}_A \operatorname{Inv}_A F$ $Q \mapsto \operatorname{Inv}_A \operatorname{Pol}_A Q$

TU Dresden

Intro to clones, Galois theory & applications


```
What are the closures?
What is
\{F \subseteq O_A \mid F = \operatorname{Pol}_A \operatorname{Inv}_A F\} = \{\operatorname{Pol}_A Q \mid Q \subseteq R_A\}\{Q \subseteq R_A \mid Q = \operatorname{Inv}_A \operatorname{Pol}_A Q\} = \{\operatorname{Inv}_A F \mid F \subseteq O_A\}?
```


What are the closures? What is $\{F \subseteq O_A \mid F = \operatorname{Pol}_A \operatorname{Inv}_A F\} = \{\operatorname{Pol}_A \mathcal{Q} \mid \mathcal{Q} \subseteq \mathsf{R}_A\}$ $\{\mathcal{Q} \subseteq \mathsf{R}_A \mid \mathcal{Q} = \operatorname{Inv}_A \operatorname{Pol}_A \mathcal{Q}\} = \{\operatorname{Inv}_A F \mid F \subseteq \mathsf{O}_A\}?$

Lemma

For $Q \subseteq R_A$, the set $Pol_A Q$ is a clone on A.

What are the closures? What is $\{F \subseteq O_A \mid F = \operatorname{Pol}_A \operatorname{Inv}_A F\} = \{\operatorname{Pol}_A \mathcal{Q} \mid \mathcal{Q} \subseteq \mathsf{R}_A\}$ $\{\mathcal{Q} \subseteq \mathsf{R}_A \mid \mathcal{Q} = \operatorname{Inv}_A \operatorname{Pol}_A \mathcal{Q}\} = \{\operatorname{Inv}_A F \mid F \subseteq \mathsf{O}_A\}?$

Lemma

For $Q \subseteq R_A$, the set $Pol_A Q$ is a clone on A.

Consequence for $F \subseteq O_A$ $F \subseteq \operatorname{Pol}_A \operatorname{Inv}_A F$ clone \implies Clo $(\langle A; F \rangle) \subseteq \operatorname{Pol}_A \operatorname{Inv}_A F$

What are the closures? What is $\{F \subseteq O_A \mid F = \operatorname{Pol}_A \operatorname{Inv}_A F\} = \{\operatorname{Pol}_A \mathcal{Q} \mid \mathcal{Q} \subseteq \mathsf{R}_A\}$ $\{\mathcal{Q} \subseteq \mathsf{R}_A \mid \mathcal{Q} = \operatorname{Inv}_A \operatorname{Pol}_A \mathcal{Q}\} = \{\operatorname{Inv}_A F \mid F \subseteq \mathsf{O}_A\}?$

Lemma

For $Q \subseteq R_A$, the set $Pol_A Q$ is a clone on A.

Consequence for $F \subseteq O_A$ $F \subseteq \operatorname{Pol}_A \operatorname{Inv}_A F$ clone \implies $\operatorname{Clo}(\langle A; F \rangle) \subseteq \operatorname{Pol}_A \operatorname{Inv}_A F$

Which clones arise this way? TU Dresden Intro to clones, Galois theory & applications

slide 24 of 41

Local closure Given $g \in O_A^{(n)}$, and $F \subseteq O_A^{(n)} = A^{(A^n)}$.

Local closure Given $g \in O_A^{(n)}$, and $F \subseteq O_A^{(n)} = A^{(A^n)}$.

$$g \in A^{(A^n)} \leftrightarrow (g(x))_{x \in A^n}$$

TU Dresden

Local closure
Given
$$g \in O_A^{(n)}$$
, and $F \subseteq O_A^{(n)} = A^{(A^n)}$.
 $g \in A^{(A^n)} \leftrightarrow (g(x))_{x \in A^n}$
 \vdots

slide 25 of 41

slide 25 of 41

slide 25 of 41

Local closure is the answer

Theorem (Corollary (Pöschel 79/80))

For $F \subseteq O_A$ it is $\operatorname{Pol}_A \operatorname{Inv}_A F = \operatorname{Loc}_A \operatorname{Clo}(\langle A; F \rangle).$

Local closure is the answer

Theorem (Corollary (Pöschel 79/80))

For $F \subseteq O_A$ it is $\operatorname{Pol}_A \operatorname{Inv}_A F = \operatorname{Loc}_A \operatorname{Clo}(\langle A; F \rangle)$.

Corollary (Pöschel 79/80) { $Pol_A Q \mid Q \subseteq R_A$ } = { $Loc_A F \mid F \subseteq O_A$ clone}.

Local closure is the answer

Theorem (Corollary (Pöschel 79/80))

For $F \subseteq O_A$ it is $\operatorname{Pol}_A \operatorname{Inv}_A F = \operatorname{Loc}_A \operatorname{Clo}(\langle A; F \rangle)$.

Corollary (Pöschel 79/80)

 $\{\operatorname{Pol}_A Q \mid Q \subseteq \mathsf{R}_A\} = \{\operatorname{Loc}_A F \mid F \subseteq \mathsf{O}_A \text{ clone}\}.$

Corollary (Bodnarčuk, Kalužnin, Kotov, Romov 69, Geiger 68) $A \text{ finite } \implies \{ \operatorname{Pol}_A Q \mid Q \subseteq \operatorname{R}_A \} = \text{set of all clones.}$

 $\{\operatorname{Inv}_{\mathcal{A}} F \mid F \subseteq O_{\mathcal{A}}\} = \{\operatorname{Inv}_{\mathcal{A}} \operatorname{Pol}_{\mathcal{A}} \mathcal{Q} \mid \mathcal{Q} \subseteq \mathsf{R}_{\mathcal{A}}\}?$

$\{\operatorname{Inv}_{A} F \mid F \subseteq O_{A}\} = \{\operatorname{Inv}_{A} \operatorname{Pol}_{A} Q \mid Q \subseteq R_{A}\}?$

Answer

Local closures of relational clones $\{ Inv_A F \mid F \subseteq O_A \} = \{ LOC_A Q \mid Q \subseteq R_A \text{ relational clone} \}.$

$\{\operatorname{Inv}_{A} F \mid F \subseteq O_{A}\} = \{\operatorname{Inv}_{A} \operatorname{Pol}_{A} Q \mid Q \subseteq R_{A}\}?$

Answer Local closures of relational clones $\{ Inv_A F \mid F \subseteq O_A \} = \{ LOC_A Q \mid Q \subseteq R_A \text{ relational clone} \}.$

On finite sets A $\{ Inv_A F \mid F \subseteq O_A \} = \{ Q \subseteq R_A \mid Q \text{ relational clone} \}$

$\{\operatorname{Inv}_{A} F \mid F \subseteq O_{A}\} = \{\operatorname{Inv}_{A} \operatorname{Pol}_{A} Q \mid Q \subseteq R_{A}\}?$

Answer Local closures of relational clones $\{ Inv_A F \mid F \subseteq O_A \} = \{ LOC_A Q \mid Q \subseteq R_A \text{ relational clone} \}.$

On finite sets A $\{ Inv_A F \mid F \subseteq O_A \} = \{ Q \subseteq R_A \mid Q \text{ relational clone} \}$

Relational clones?

They have got an intrinsical description, but technical!

Outline

- Operations, relations and clones
- 2 Fundamental Galois connection of clone theory
- Classical structural results

Applications

Structure of all clones

- \mathcal{L}_A set of all clones on A
- $(\mathcal{L}_{\mathcal{A}}, \subseteq)$ poset, even complete algebraic lattice.
- \mathcal{L}_A closed under \bigcap , i.e. closure system
- closure operator $O_A \supseteq F \mapsto \langle F \rangle$ =least clone containing F = closure of $F \cup J_A$ against composition = Clo ($\langle A; F \rangle$).

•
$$\bigvee \mathcal{F} = \langle \bigcup \mathcal{F} \rangle$$

Clone lattice on $A = \emptyset$

$$\circ O_A = J_A = C_A$$

Clone lattice on $A = \{0\}$

$$\bigcirc O_A = C_A$$
$$\bigcirc J_A = O_A \setminus O_A^{(0)}$$

Clone lattice on $A = \{0, 1\}$ (without $O_A^{(0)}$)

Emil Leon Post (1897 - 1954)

Clone lattice on $A = \{0, 1\}$ (without $O_A^{(0)}$)

Clone lattice for $3 \leq |A| < \aleph_0$

Draw a picture!

Clone lattice for $3 \le |A| < \aleph_0$

Theorem (Janov, Muchnik, 1959)

There exist \aleph_1 -many clones on any set A having at least three distinct elements.

Corollary $|\mathcal{L}_A| = \aleph_1 \text{ for } 3 \le |A| < \aleph_0.$

Minimal and maximal clones

Usually for finite A.

Classification of minimal functions

Theorem (I.G. Rosenberg, 1983, 1986)

Every minimal function $f \in O_A$ (2 < |A| < \aleph_0) satisfies one of the following conditions

•
$$f \in O_A^{(1)}$$
 and $(f^2 = f \text{ or } f^p = \operatorname{id}_A for a prime p)$.

2)
$$f \in O_A^{(2)}$$
 idempotent, i.e. $\forall x \in A$: $f(x, x) = x$.

- 3 $f \in O_{\Delta}^{(3)}$ majority operation, i.e. $\forall x, y \in A: f(x, x, y) = f(x, y, x) = f(y, x, x) = x.$
- 4 $f \in O_A^{(3)}$ and $\forall x, y, z \in A$: f(x, y, z) = x + y + z, where $+ \in O_A^{(2)}$ is a BOOLEan group operation, i.e. $\forall x \in A: x + x = 0$.
- **5** $f \in O_A^{(n)}$ $3 \le n$ -ary semiprojection, i.e.

 $\exists 1 < i < n \forall x \in A^n$: $|\operatorname{im} x| < n \implies f(x) = x(i)$.

2 Cases (1) and (4): conditions even sufficient for minimality of Clo ($\langle A; f \rangle$).

Maximal clones

Theorem (I.G. Rosenberg, 1970)

A finite, $F \leq O_A$ maximal iff $F = Pol_A \{\varrho\}$, for ϱ

- partial order with least and greatest element.
- 2 graph $\{(x, f(x)) | x \in A\}$ of prime permutation f
- In non-trivial equivalence relation on A.
- affine relation w.r.t. some elementary ABELian p-group on A, p prime.
- a central relation of arity $h (1 \le h < |A|)$.
- an h-regular relation ($3 \le h \le |A|$).

Outline

- Operations, relations and clones
- 2 Fundamental Galois connection of clone theory
- 3 Classical structural results

4 Applications

CSP (Constraint Satisfaction Problem)

- $\Sigma = a$ finite relational language,
- $\operatorname{Rel}(\Sigma)$ category of all relational structures in language Σ
- $\operatorname{Rel}_{\operatorname{fin}}(\Sigma)$ full subcategory of $\operatorname{Rel}(\Sigma)$: objects with finite carrier sets

Definition

For $\mathbb{B} \in \operatorname{Rel}_{fin}(\Sigma)$, $\operatorname{CSP}(\mathbb{B})$ is the membership (decision) problem for the following set: $\left\{ \mathbb{A} \in \operatorname{Rel}_{fin}(\Sigma) \mid \mathbb{A} \longrightarrow \mathbb{B} \right\}$

Facts

Lemma

For $\mathbb{B} \in \operatorname{Rel}_{\operatorname{fin}}(\Sigma)$, $\operatorname{CSP}(\mathbb{B})$ is in NP.

Facts

Lemma

For $\mathbb{B} \in \operatorname{Rel}_{fin}(\Sigma)$, $\operatorname{CSP}(\mathbb{B})$ is in NP.

Question

For which $\mathbb{B} \in \operatorname{Rel}_{fin}(\Sigma)$ is $\operatorname{CSP}(\mathbb{B})$ in P?

Facts

Lemma

For $\mathbb{B} \in \operatorname{Rel}_{fin}(\Sigma)$, $\operatorname{CSP}(\mathbb{B})$ is in NP.

Question

For which $\mathbb{B} \in \operatorname{Rel}_{fin}(\Sigma)$ is $\operatorname{CSP}(\mathbb{B})$ in P?

CSP-Dichotomy Conjecture (Feder, Vardi, 1998) For every $\mathbb{B} \in \operatorname{Rel}_{fin}(\Sigma)$, $\operatorname{CSP}(\mathbb{B})$ either is in P or it is NP-complete.

Where does clone theory come into play?

Where does clone theory come into play?

Proposition

If $\mathbb{B}, \mathbb{C} \in \operatorname{Rel}_{fin}(\Sigma)$ have the same carrier and $\operatorname{Pol} \mathbb{B} \subseteq \operatorname{Pol} \mathbb{C}$, then $\operatorname{CSP}(\mathbb{C})$ is polynomial-time reducible to $\operatorname{CSP}(\mathbb{B})$, i.e., $\operatorname{CSP}(\mathbb{C})$ is at most as hard as $\operatorname{CSP}(\mathbb{B})$.

Where does clone theory come into play?

Proposition

If \mathbb{B} , $\mathbb{C} \in \operatorname{Rel}_{fin}(\Sigma)$ have the same carrier and $\operatorname{Pol} \mathbb{B} \subseteq \operatorname{Pol} \mathbb{C}$, then $\operatorname{CSP}(\mathbb{C})$ is polynomial-time reducible to $\operatorname{CSP}(\mathbb{B})$, i.e., $\operatorname{CSP}(\mathbb{C})$ is at most as hard as $\operatorname{CSP}(\mathbb{B})$.

Recent research

One proves that $CSP(\mathbb{B})$ belongs to P by finding nice polymorphisms in Pol \mathbb{B} , e.g. semilattice, nu, Mal'cev, totally symmetric idempotent, edge operations ...

A relational decomposition theory for algebras (RST)

