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1.1. Introduction to the foundations of mathematics

What is mathematics

Mathematics is the study of systems of elementary objects, whose only considered
nature is to be exact, unambiguous (two objects are equal or different, related or not; an
operation gives an exact result...). Mathematics as a whole can be seen as «the science
of all possible worlds» of this kind (of exact objects).

Mathematical systems are conceived as «existing» independently of our usual world or
any particular sensation, but their study requires some form of representation. Diverse
ways can be used, that may be equivalent (giving the same results) but with diverse
degrees of relevance (efficiency) that may depend on purposes. Ideas may first appear
as more or less visual intuitions which may be expressed by drawing or animations, then
their articulations may be expressed in words or formulas for careful checking,
processing and communication. To be freed from the limits or biases of a specific form
of representation, is a matter of developing other forms of representation, and
exercizing to translate concepts between them. The mathematical adventure is full of
plays of conversions between forms of representation, which may reflect articulations
between mathematical systems themselves.

Theories

Mathematics is split into diverse branches according to the kind of systems being
considered. These frameworks of any mathematical work may either remain implicit
(with fuzzy limits), or formally specified as theories. Each theory is the study of a
supposedly fixed system that is its world of objects, called its model. But each model of a
theory may be just one of its possible interpretations, among other possibly legitimate
models. For example, roughly speaking, all sheets of paper are systems of material
points, models of the same theory of Euclidean plane geometry, but independent of each
other.

The word «theory» may take diverse meanings between uses, from mathematical ones

to those of ordinary language and other sciences. Let us first present the distinction by
nature (general kind of objects); the other distinction, by intent (realism vs. formalism)
is introduced below and in 1.9.

Non-mathematical theories describe roughly or qualitatively some systems or aspects
of the world (fields of observation) which escape exact self-sufficient description. For
example, usual descriptions of chemistry involve drastic approximations, recollecting
some rough accounts of seemingly arbitrary effects and laws, whose deductions from
quantum physics are often out of reach of direct calculations. The lack of clear
distinction of objects and their properties induces risks of mistakes when approaching
them and trying to infer some properties from others, such as to infer some global
properties of a system from likely, fuzzy properties of its parts.

Pure mathematical theories, only describing exact systems, can usually be protected


http://settheory.net/
http://settheory.net/

from the risk to be «false», by use of rigorous methods (formal rules) designed to ensure
preserving the exact conformity of theories to their intended models.

In between both, applied mathematical theories, such as theories of physics are also
mathematical theories but the mathematical systems they describe are meant as
idealized (simplified) versions of aspects of given real-world systems while neglecting
other aspects; depending on its accuracy, this idealization (reduction to mathematics)
also allows for correct deductions within accepted margins of error.

Foundations and developments Logical framework
(Model theory)

Any mathematical theory, which describes its model(s), is
made of a content and is itself described by a logical
framework. The content of a theory is made of components
which are pieces of description (concepts and information
we shall describe in 1.3). A theory starts with a choice of
foundation made of a logical framework and an initial
version of its content (hopefully rather small, or at least
simply describable). The components of this initial version
are qualified as primitive.

The study of the theory progresses by choosing some of its
possible developments : new components resulting from its
current content (by rules also described by the logical
framework), and that can be added to it to form its next
content. These different contents, having the same meaning
(describing the essentially same models), play the role of
"different presentations of the same theory". Any other
possible development (not yet chosen) can still be added later, as the part of the
foundation that could generate it remains. Thus, the totality of possible developments of
a theory, independent of the order chosen to process them, already forms a kind of
«reality» that these developments explore.

Develop.

Axioms | Theorems:

Model

To express the properties of its models, each theory includes a list of statements, which
are formulas meant as true when interpreted in any model. Its primitive statements are
called axioms. Further statements called theorems are added by development to the
content, under the condition that they are proven (deduced) from previous ones : this
ensures them to be true in all models, provided that previous ones were. Theorems can
then be used in further developments in the same way as axioms. A theory is consistent
if its theorems will never contradict each other. Inconsistent theories cannot have any
model, as the same statement cannot be true and false on the same system. The
Completeness Theorem (1.9, 1.10, 4.7) will show that the range of all possible theorems
precisely fits the more interesting reality of which statements stay true across the range
of all models (which indeed exist for any consistent theory).

Other kinds of developments (definitions and constructions) adding other components
beyond statements, will be described in 1.5, 1.D, 4.10 and 4.11.

There are possible hierarchies between theories, where some can play a foundational
role for others. For instance, the foundations of several theories may have a common
part forming a simpler theory, whose developments are applicable to all.

A fundamental work is to develop, from a simple initial basis, a convenient body of
knowledge to serve as a more complete "foundation", endowed with efficient tools
opening more direct ways to further interesting developments.

Platonism vs Formalism

Mathematics, or each theory, may be approached in two ways (detailed in 1.9):

e The Platonic or realistic view, considers the mathematical realm or some particular
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described systems, as preexisting realities to be explored (or remembered,
according to Plato). This is the approach of intuition which by imagining things,
smells their order before formalizing them.

o A formalistic or logicist view focuses on language, rigor (syntactic rules) and
dynamical aspects of a theory, starting from its formal foundation, and following
the rules of development.

Many philosophers of mathematics carry obsolete conceptions of such views as forming
a list of multiple opposite beliefs (candidate truths) on the real nature of mathematics.
But after examination, just remain these two necessary and complementary views, with
diverse shares of relevance depending on topics.

By its limited abilities, human thought cannot operate in any fully realistic way over
infinite systems (or finite ones with unlimited size), but requires some kind of logic for
extrapolation, roughly equivalent to formal reasonings developed from some foundations
; this work of formalization can prevent possible errors of intuition. Moreover,
mathematical objects cannot form any completed totality, but only a forever temporary,
expanding realm, whose precise form is an appearance relative to a choice of
formalization.

But beyond its inconvenience for expressing proofs, a purely formalistic view cannot
hold either because the clarity and self-sufficiency of any possible foundation (starting
position with formal development rules), remain relative: any starting point had to be
chosen somehow arbitrarily, taken from and motivated by a larger perspective over
mathematical realities; it must be defined in some intuitive, presumably meaningful way,
implicitly admitting its own foundation, while any try to specify the latter would lead to
a path of endless regression, whose realistic preexistence would need to be admitted.

The cycle of foundations

The general foundation of all mathematics is itself a mathematical study, thus a branch
of mathematics, called mathematical logic. Despite the simplicity of nature of
mathematical objects, it turns out to be quite complex (though not as bad as a physics
theory of everything): by describing the general form of theories and systems they may
describe, it forms the general framework of all branches of mathematics... including
itself. So providing the foundation of each considered foundation (unlike ordinary
mathematical works that go forward from an assumed foundation), it does not form a
precise starting point, but a wide loop composed of easier and harder steps. Still this
cycle truly plays a foundational role for mathematics, providing to its diverse branches
many useful concepts (tools, rigor, inspirations and answers to diverse philosophical
questions).

(This is similar to the use of dictionaries defining each word by other words, or to this
other science of complex exact systems: computer programming. Indeed computers can
be simply used, knowing what you do but not why it works; their working is based on
software that was written in some language, then compiled by other software, and on
the hardware and processor whose design and production were computer assisted. And
this is much better in this way than at the birth of this field.)

It is dominated by two theories:

¢ Set theory describes the universe of «all mathematical objects», from the simplest
to the most complex such as infinite systems (in a finite language). It can roughly
be seen as one theory, but in details it will have an endless diversity of possible
variants (indeed differing from each other).

¢ Model theory is the study of theories (their formalisms as systems of symbols),
and systems (possible models of theories). Proof theory completes this by
describing formal systems of rules of proofs. While model theory is usually meant
as a general topic (admitting variants of concepts), it can be specified into precise
versions, thus mathematical theories called logical frameworks, each giving a
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precise format of expression for a wide range of possible theories, and (if
completed by proof theory) a format in which all proofs from any of these theories
can in principle be expressed. There is an essentially unique main logical
framework called first-order logic, by which the concepts of theory, theorem (i.e.
provable statement) and consistency of each theory, find their natural
mathematical definitions; but other logical frameworks are sometimes needed too.

Each one is the natural framework to formalize the other: each set theory is formalized
as a theory described by model theory; the latter better comes as a development from
set theory (defining theories and systems as complex objects) than directly as a theory.
Both connections must be considered separately: both roles of set theory, as a basis and
an object of study for model theory, must be distinguished. But these formalizations will
take a long work to complete.

1.2. Variables, sets, functions and operations

Starting mathematics is a matter of introducing some simple concepts from the
founding cycle, which may seem as self-sufficient as possible, while they cannot be
absolutely so (by lack of clear definitions, which would require a different start). A usual
and natural solution is to start with a set theory not fully formalized as an axiomatic
theory.

This section (1.2) will intuitively introduce some first few concepts of set theory : those
of set, function and operation. But it will start by introducing some qualifications of
variables only meant as extrinsic qualities, namely to describe the status of a given
variable relatively to some kinds of contexts (viewpoints) which are not yet themselves
introduced at this stage. So here and similarly for other concepts later, the reader is
invited to not be stopped by the seeming fuzziness of the text in orange font, which will
be clarified by specific uses or other developments in later sections.

Then 1.3 will start introducing model theory, by which any theory (and thus any set
theory) can be formalized. More subtleties (paradoxes..) in the whole picture of the
foundations of mathematics will be explained later.

Constants

A constant symbol is a symbol seen as denoting a unique object, called its value.
Examples: 3, @, N. Those of English language usually take the form of proper names and
names with «the» (singular without complement).

Free and bound variables

A variable symbol (or a variable), is a symbol which, instead having an a priori definite
value, comes with the concept of its possible values, or possible interpretations, each of
which give it a particular value. Each possibility gives it a role of constant. There may be
any number of these possible values, including infinitely many, only one or even none.

It can be understood as limited by a box, whose inside has multiple versions in parallel,
articulating different viewpoints over it:

e The variable is called fixed when seen "from inside", which means it has a given
value, and is thus usable as a constant.

e It is called bound when seen from the «outside» where the diversity of its possible
values is considered fully known, gathered and processed as a whole. (1.8)

e It is called free to describe a coexistence of both statuses (views over it): a local
view seeing it as fixed, and an external view giving the context of its variations.

More precisely with respect to given theories, fixing a variable means taking a free



variable in a theory and more lengthily ignoring its variability, therefore simulating the
use of the other theory obtained by holding this symbol as a constant.

The diverse «internal viewpoints», corresponding to each possible value seen as fixed,
may be thought of as abstract «locations» in the mathematical universe, while the
succession of views over a symbol (qualifying it as a constant, a free variable or a bound
variable), can be seen as a first expression of the flow of time in mathematics: a variable
is bound when all the diverse "parallel locations inside the box" (possible values) are
past. All these places and times are themselves purely abstract, mathematical entities.

Ranges and sets

The range of a variable, is the meaning it takes when seen as bound: it is the
«knowledge» of the considered totality of its possible or authorized values (seen in bulk:
unordered, ignoring their context), that are called the elements of this range. This
«knowledge» is an abstract entity that, depending on context, may be able to actually
process (encompass) infinities of objects (unlike human thought). Any range of a
variable is called a set.

A variable has a range when it can be bound, i.e. when an encompassing view over all
its possible values is given. Not all variables of set theory will have a range. A variable
without a range can still be free, which is no more an intermediate status between fixed
and bound, but means it can take some values or some other values with no claim of
exhausitivity.

Cantor defined a set as a «gathering M of definite and separate objects of our intuition
or our thought (which are called the "elements" of M) into a whole». He explained to
Dedekind : «If the totality of elements of a multiplicity can be thought of... as "existing
together"”, so that they can be gathered into "one thing", I call it a consistent multiplicity
or a "set".» (We expressed this "multiplicity" as that of values of a variable).

He described the opposite case as an «inconsistent multiplicity» where «admitting a
coexistence of all its elements leads to a contradiction». But non-contradiction cannot
suffice to generally define sets: the consistency of a statement does not imply its truth
(i.e. its negation may be true but unprovable); facts of non-contradiction are often
themselves unprovable (incompleteness theorem); and two separately consistent
coexistences might contradict each other (Irresistible force paradox / Omnipotence

paradox).

A variable is said to range over a set, when it is bound with this set as its range. Any
number of variables can be introduced ranging over a given set, independently of each
other and of other variables.

Systematically renaming a bound variable in all its box, into another symbol not used in
the same context (same box), with the same range, does not change the meaning of the
whole. In practice, the same letter can represent several separate bound variables (with
separate boxes), that can take different values without conflict, as no two of them are
anywhere free together to compare their values. The common language does this
continuously, using very few variable symbols («he», «she», «it»...)

Functions

A function is an object fmade of the following data:

¢ A set called the domain of f, denoted Dom f
e For each element x of Dom £, an object written f(x), called the image of x by for
value of f at x.

In other words, it is an entity behaving as a variable whose value is determined by that
of another variable called its argument with range Dom f: whenever its argument is
fixed (gets a name, here "x", and a value in Dom f), fbecomes also fixed, written f(x).
This amounts to conceiving a variable fwhere the "possible views" on it as fixed, are
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treated as objects x conceptually distinct from the resulting values of f. As we shall see
later, such an entity (dependent variable) fwould not be (viewable as) a definite object
of set theory if its argument had no range, i.e. could not be bound (it would only be a
meta-object, or object of model theory, that we shall call a functorin 1.4)

Operations

The notion of operation generalizes that of function, by admitting a finite list of
arguments (variables with given respective ranges) instead of one. So, an operation
gives a result (a value) when all its arguments are fixed. The number n of arguments of
an operation is called its arity ; the operation is called n-ary. It is called unary if n=1 (it
is a function), binary if n=2, ternary if n=3...

The concept of nullary operation (n=0) is superfluous, as their role is already played by
their unique value; 2.3 will show how to construct operations with arity > 1 by means of
functions.

Like for functions, the arguments of operations are basically denoted not by symbols but
by places around the operation symbol, to be filled by any expression giving them
desired values. Diverse display conventions may be used (1.5). For instance, using the
left and right spaces in parenthesis after the symbol f, we denote f(x,y) the value of a
binary operation fon its fixed arguments named x and y (i.e. its value when its
arguments are assigned the fixed values of x and y).

An urelement (pure element) is an object not playing any other role than that of
element: it is neither a set nor a function nor an operation.

1.3. Form of theories: notions, objects and meta-
objects

The variability of the model

Each theory describes its model as a fixed system. Yet this may be considered from some
wider viewpoint as a mere «choice» of one possible model (interpretation) in a (usually
infinite) range of other possible models of the same theory; the point of model theory is
to conceive a general definition of "models", i.e. systems which fit the given formal
description by a theory (1.9). Now this fixation of the model, like the fixation of any
variable, is just the simple act of picking any possibility, ignoring any issue of how to
effectively specify an example. Actually these «choice» and «existence» of models can
be quite abstract. In details, the proof of the Completeness theorem will effectively
«specify» a model of any consistent theory for the general case, but this definition will
not be very explicit, due to its use of infinity (4.7). Regardless this difficulty, the attitude
of implicitly fixing a model when formally studying any mathematical theory, remains
the normal way of interpreting it (except somehow for set theory as explained in 2.A).

Notions and objects

Each theory has its own list of notions (usually designated by common names), formally
serving as the kinds of variables it can use ; each model interprets each notion as a set
that is the common range of all variables of this kind. For example, Euclidean geometry
has the notions of «point», «straight line», «circle» and more, and is usually expressed
using a different style of variable symbol for each. The objects of a theory in a model,
are all possible values of its variables of all kinds (the elements of all its notions) in this
model.

One-model theory
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Any discussion on several theories T and systems M that may be models of those T,
takes place in model theory, itself a mathematical theory in its own right with its notions
of «theory» and «system» that are the respective kinds of the variables Tand M. But
when focusing on one theory with a fixed model, the variables T'and M now fixed
disappear from the list of variables. Their kinds, the notions of theory and model,
disappear from the notions list too. This reduces the framework, from some model
theory, to that of a one-model theory.

A model of a one-model theory, is a system [ 7, M] which combines a theory T with a
model M of T.

The diversity of logical frameworks

The role of a logical framework, as a precise version of (one-)model theory with its proof
theory, is to describe :

e The admissible forms of contents for theories ;

¢ In particular, the syntactic structures of possible statements and other
expressions, which can be called their "grammar" ;

* The meaning of these contents and expressions on the models ;

e The rules of development of theories.

Here are those we shall see, roughly ordered from the poorest to the most expressive
(though the order depends on the ways to relate them):

e Boolean algebra, also called propositional calculus (1.6);

¢ Algebra;

First-order logic;

Duality (for geometry) and the tensor formalism for linear algebra;
Second-order logic (5.1, 5.2);

Higher-order logic (5.2);

Strong versions of set theory (1.A).

We shall first describe the main two of them in parallel. First-order logic is the most
common version of model theory, describing first-order theories we shall also call
generic theories. Set theory, which can encompass all other theories, can also
encompass logical frameworks and thus serve itself as the ultimate logical framework as
will be explained in 1.D.

Most frameworks manage notions as types (usually in finite number for each theory)
classifying both variables and objects. Notions are called types if each object belongs to
only one of them, which is then also called the type of the variables that can name it. For
example, an object of Euclidean geometry may be either a point or a straight line, but
the same object cannot be both a point and a straight line. But set theory will need more
notions beyond types: classes, which will be introduced in 1.7.

Examples of notions from various theories

Theory Kinds of objects (notions)
Generic theories  Urelements classified by "types" to play different roles
Set theory Elements, sets, functions, operations, relations, tuples...
Model theory Theories, systems and their components (listed below)

Objects, symbols, types or other notions, Booleans,
structures (operators, predicates), expressions (terms,
formulas)...

One-model theory

Arithmetic Natural numbers
Linear Algebra Vectors, scalars...
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Geometry Points, straight lines, circles...

Meta-objects

The notions of a one-model theory (1MT), normally interpreted in [ T, M], classify the
components of T («type», «symbol», «formula»...), and those of M («object», and tools to
interpret components and expressions of T there). But the same notions (which may
belong to another logical framework) can be interpreted in [1MT, [ T, M]], by putting the
prefix meta- on them.

By its notion of «object», each one-model theory distinguishes the objects of Tin M from
the rest of its own objects in [ T, M], which are the meta-objects. The above rule of use of
the meta prefix would let every object be a meta-object; but we will make a vocabulary
exception by only calling meta-object those which are not objects: symbols, types or
other notions, Booleans, structures, expressions...

Set theory only knows the ranges of some of its own variables, seen as objects (sets).
But, seen by one-model theory, every variable of a theory has a range among notions,
which are meta-objects only.

Components of theories

In a given logical framework, the content of a theory consists in 3 lists of components of
the following kinds, where those of each of the latter two kinds are finite systems using
those of the previous kind.

o A list of abstract types, names that will designate the types in each system;

¢ A language (vocabulary): list of structure symbols, names of the structures which
will form the described system (1.4).

¢ A list of axioms chosen among expressible statements with this language (1.9).

Set-theoretical interpretations Set theory
) ) ) ) Theory

Any generic theory can be interpreted (inserted, translated) in

set theory by converting its components into components of set

theory. This is the usual view of ordinary mathematics, seeing

many systems as «sets with relations or operations such
that...», with possible connections between these systems. Let
us introduce both the generic interpretations applicable to any

generic theory, and other ones usually preferred for some | I
specific theories.

Any interpretation converts each abstract type into a symbol
(name) designating a set called interpreted type (serving as the
range of variables of that type, whose use is otherwise left
intact). This symbol is usually a fixed variable in the generic
case, but can be accepted as constant symbol of set theory in special cases such as
numbers systems (N, R...).

In generic interpretations, all objects (elements of interpreted types) are urelements,
but other kinds of interpretations called standard by convention for specific theories
may do otherwise. For example, standard interpretations of geometry represent points
by urelements, but represent straight lines by sets of points.

Universe

Generic interpretations will also convert structure symbols into fixed variables (while
standard ones may define them using the language of set theory). Any choice of fixed
values of all types and structure symbols, defines a choice of system. When the language
is seen as a set (in particular if it is finite) which is usually the case, models are
themselves objects of set theory, owing their multiplicity to the variability of types and
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structure symbols. This integrates all needed theories into the same set theory, while
gathering representatives of all their considered models inside a common model of set
theory. This is why models of set theory are called universes.

When adopting set theory as our conceptual framework, this concept of "interpretation"
becomes synonymous with the choice (designation) of a model.

1.4. Structures of mathematical systems

The structures, designated in each interpretation by the structure symbols forming a
given language, form a described system by relating the objects of the diverse types,
giving their roles to the objects of each type with respect to those of other types.
Depending on details, the roles so given to objects of some types may be understood as
those of complex objects, though all this can work with bare objects like urelements.

First-order structures

The kinds of structures (and thus the kinds of structure symbols) allowed in first-order
theories, thus called first-order structures, are split into operators and predicates as
described below. More powerful structures called second-order structures will be
introduced in 5.1, coming from set theoretical tools or as packs of an additional type
with first-order structures.

An operatoris an operation between interpreted types. On the side of the theory before
interpretation, each operator symbol comes with its symbol type made of

e its list of arguments (variable symbols figured as places around the operator
symbol instead of names),

¢ for each argument, its abstract type, whose value as a set will be the range of this
argument in any interpretation;

e its type of results: the type which will contain all results of the operation
designated by this symbol, in any interpretation with given values of its
arguments.

In a theory with only one type, this data is reduced to the arity.

The constant symbols (or constants) of a theory are its nullary operator symbols (having
no argument).

Unary operators (that are functions) will be called here functors (*).

The list of types is completed by the Boolean type, interpreted as the pair of elements
(the set of two elements) we shall denote 1 for «true» and O for «false». A variable of
this type (outside the theory) is called a Boolean variable.

A para-operator is an operator in the generalized sense allowing the Boolean type
among its types of arguments and results.

A (logical) connective is a para-operator with only Boolean arguments and values.

A predicate is a para-operator with Boolean values, and at least one argument but no
Boolean argument.

Structures of set theory

Formalizing set theory, means describing it as a theory with its notions, structures and
axioms. We shall do this in a dedicated logical framework, different from but convertible
into first-order logic by a procedure described in 2.1.

This relates the terminologies of set theory and one-model theory in a different way than
when a theory is interpreted in set theory. To keep the natural names of set theoretical
notions (sets, functions...) when defined by this formalization, it would become incorrect
to still use them in the sense of the previous link (where notions were "sets" and
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operators were "operations"). To avoid confusion, let us here only use the model
theoretical notions as our conceptual framework, ignoring their set theoretical
interpretations. Ways to put both links together, and to reconcile both conceptions of the
same theories (descriptions by model theory and interpretations in set theory) will be
described in 1.7 and 1.D.

Let us admit 3 primitive notions : elements (all objects), sets and functions. Here are
their main primitive structures.

One aspect of the role of sets is given by the binary predicate € of belonging or
membership : for any element x and any set E, we say that xis in E (or x belongs to E, or
x is an element of E, or E contains x) and write x € E, to mean that xis a possible value
of the variables with range E.

Functions fplay their role by two operators: the domain functor Dom, and the function
evaluator, binary operator that is implicit in the notation f{x), with arguments fand x,
giving the value of any function fat any element x of Dom f£.

More primitive symbols will be presented in 1.7 and 1.8, then most other primitive
symbols and axioms will be introduced in 1.A, 2.1, 2.2 and 2.7.

About ZFC set theory

The Zermelo-Fraenkel set theory (ZF, or ZFC with the axiom of choice) is a generic
theory with only one type «set», one structure symbol € , and axioms. It implicitly
assumes that every object is a set, and thus a set of sets and so on, built over the empty
set.

As a rather simply expressible but very powerful set theory for an enlarged founding
cycle, it can be a good choice indeed for specialists of mathematical logic to
conveniently prove diverse difficult foundational theorems, such as the unprovability of
some statements, while giving them a scope that is arguably among the best conceivable
ones.

But despite the habit of authors of basic math courses to conceive their presentation of
set theory as a popularized or implicit version of ZF(C), it is actually not an ideal
reference for a start of mathematics for beginners:

¢ It cannot be self-contained as it must assume the framework of model theory to
make sense.

¢ Its axioms, usually just admitted (as either intuitive, obvious, necessary or just
historically selected for their consistency and the convenience of their
consequences), would actually deserve more subtle and complex justifications,
which cannot find place at a starting point of mathematics.

¢ Ordinary mathematics, using many objects usually not seen as sets, are only
inelegantly developed from this basis. As the roles of all needed objects can
anyway be indirectly played by sets, they did not require another formalization,
but remained cases of discrepancy between the «theory» and the practice of
mathematics. The complexity and weirdness of these needed developments do not
disturb specialists just because once known possible, they can simply be taken for
granted.

Formalizing types and structures as objects of one-model theory

To formalize one-model theory through the use of the meta- prefix, both meta-notions of
"types" and "structures" are given their roles by meta-structures as follows.

Since one-model theory assumes a fixed model, it only needs one meta-type of "types" to
play both roles of abstracts types (in the theory) and interpreted types (components of
the model), respectively given by two meta-functors: one from variables to types, and
one from objects to types. Indeed the more general notion of «set of objects» is not used
and can be ignored.
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But the meta-notion of structure will have to remain distinct from the language, because
more structures beyond those named in the language will be involved (1.5). Structures
will get their roles as operations, from meta-structures similar to the function evaluator
(see 3.2-3.3 for clues), while the language (set of structure symbols) will be interpreted
there by a meta-functor from structure symbols to structures.

However, this mere formalization would leave undetermined the range of this notion of
structure. Trying to conceive this range as that of «all operations between interpreted
types» would leave unknown the source of knowledge of such a totality. This idea of
totality will be formalized in set theory as the powerset (2.7), but its meaning will still
depend on the universe where it is interpreted, far from our present concern for one-
model theory.

1.5. Expressions and definable structures

Terms and formulas

Given the first two layers of a theory (a list of types and a language), an expression is a
finite system of occurrences of symbols, where, intuitively speaking, an occurrence of a
symbol in an expression is a place where that symbol is written (more details later).

Each expression comes in the context of a given list of available free variables. Any
expression will give (define) a value (either an object or a Boolean) for each possible
data of

¢ A system interpreting the given types and structure symbols;
¢ Fixed values of available free variables in this system.

The type of an expression, determined by its syntax as described below, gives the type of
all its possible values. Expressions with Boolean type are called formulas; others, whose
type belongs to the given types list (their values will be objects), are called terms.

For example, « x+x » is a term with two occurrences of the variable «x», and one of the
addition symbol «+».

The diverse kinds of symbols

In expressions of first-order theories and set theory, symbols of the following kinds may
occur.

¢ Variables of each type:
o Free variables, from the list of available ones ;
o Bound variables, whose occurrences are contained by binders (see 1.8) ;
e Para-operator symbols:
o Structure symbols from the language (operators and predicates) ;
o One equality symbol per type (predicate with 2 arguments of the same type)
abusively all written = ;
o Logical connectives (1.4, listed in 1.6) ;
o The conditional operator may be introduced for abbreviation (2.4).
e Binders (1.8):
o Quantifiers V and 3 (1.10) are the only primitive binders of first-order logic ;
o More binders will be introduced in set theory.

In first-order logic, let us call logical symbols the quantifiers and symbols of para-
operators outside the language (equality, connectives and conditional operator): their
list and their meaning in each system are determined by the logical framework and the
given types list, which is why they are not listed as components of individual theories.
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Root and sub-expressions

Each expression contains a special occurrence of a symbol called its root, while each
other occurrence of a symbol there, is the root of a unique sub-expression (another
expression contained in the given one, and which we may call the sub-expression of that
occurrence). The type of an expression is given by the type of result of its root.

Expressions are built successively, in parallel between different lists of available free
variables. The first and simplest ones are made of just one symbol (as root, having a
value by itself) : constants and variables are the first terms; the Boolean constants 1 and
0 are the simplest formulas.

The next expressions are then successively built as made of the following data:

¢ A choice of root, occurrence of either a para-operator symbol (beyond constants
we already mentioned) or a binder;

o If the root is a binder: a choice of variable symbol, to be bound by it;

¢ A list of previously built expressions, whose format (number and types of entries)
is determined by the root : for a para-operator symbol, this format is given by its
list of its arguments.

An algebraic term is a term with only free variables and operator symbols ; these are the
only terms in first-order logic without conditional operator. This notion for only one type,
will be formalized as a kind of system in set theory in 4.1.

Display conventions

The display of this list of sub-expressions directly attached to the root requires a choice
of convention. For a para-operator symbol other than constants :

e Most binary para-operator symbols are displayed as one character between
(separating) both arguments, such as in x+y

¢ Symbols with higher arities can be similarly displayed by several characters
separating the entries, such as in the addition x+y+z of 3 numbers.

¢ Function-like displays, such as +(x,y) instead of x+y, are more usual for arities
other than 2 ; parenthesis may be omitted when arities are known (Polish
notation).

* A few symbols «appear» only implicitly by their special way of putting their
arguments together : multiplication in xy, exponentiation in x”.

e Parenthesis can be part of the notation of a symbol (function evaluator, tuples...).

Parenthesis can also be used to distinguish (separate) the subexpressions, thus
distinguish the root of each expression from other occurring symbols. For example the

root of (x+y)? is the exponentiation operator.

Variable structures

Usually, only few objects are named by the constants in a given language. Any other
objects can be named by a fixed variable, whose status depends on the choice of theory
to see it:

¢ An ordinary variable symbol, usable by expressions which by a binder can let it
range over some notion;

¢ A new constant symbol, to be added to the language, forming another theory with
a richer language.

The difference vanishes in generic interpretations which turn constant symbols into
variables (whose values define different models).
By similarity to constants which are particular structures (nullary operators), the
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concept of variable can be generalized to that of variable structure. But those beyond
nullary operations (ordinary variables) escape the above list of allowed symbols in
expressions. Still some specific kinds of use of variable structure symbols can be
justified as abbreviations (indirect descriptions) of the use of legitimate expressions. The
main case of this is explained below ; another use (looking similar but actually a meta-
variable) will be involved in 1.10.

Structures defined by expressions

Starting with any theory, one can introduce a kind of symbol of variable structure
(operator or predicate, though a nullary predicate is normally called a "Boolean" rather
than a "structure"), defined by the following data it means to abbreviate:

¢ An expression (terms define operators, while formulas define predicates and
Booleans);

e« Among its available free variables, a selection of those which will be bound by this
definition in the role of arguments of the intended structure; the rest of them,
which remain free, are called parameters.

Each of its possible values as a structure or a Boolean comes by fixing the values of all
parameters. So, its variation somehow abbreviates those of all parameters.

Any theory can be extended by the construction of a new notion (abstract type) given as
the range of a variable structure defined by a given (fixed) expression, while its
parameters range over all possible combinations of values. This is our first case of a
construction rule (kind of development of a theory). The full review of construction rules
will be done in 4.11.

In set theory, any function fis synonymous with the functor defined by the term f{x) with
argument x and parameter f(but the domain of this functor is Dom finstead of a type).
The terms without argument define simple objects (nullary operators) ; the one made of
a variable of a given type, seen as parameter, suffices to give all objects of its type.

Now let us declare the meta-notion of "structure" in one-model theory, and thus those of
"operator" and "predicate", as having to include at least all those reachable in this way:
defined by any expression with any possible values of parameters. The minimal version
of such a meta-notion can be formalized as a role given to the range of all combinations
of an expression with fixed values of its parameters. As this involves the infinite set of
all expressions, this meta-notion usually escapes (is inaccessible by) the described
theory itself : no fixed expression can suffice to simulate it. Still when interpreting this
in set theory, more operations between interpreted types (undefinable ones) usually
exist in the universe. Among the few exceptions, the full set theoretical range of a
variable structure with all arguments ranging over finite sets (as interpreted types) with
given size limits, can be reached by one expression whose size depends on these limits.

Invariant structures

An invariant structure of a given system (interpreted language), is a structure defined
from its language without parameters (thus a constant one). This distinction of invariant
structures from other structures, generalizes the distinction between constants and
variables, both to cases of nonzero arity, and to what can be defined by expressions
instead of directly named in the language.

Indeed any structure named by a symbol in the language is directly defined by it without
parameter, and thus invariant. As will be further discussed in 4.10, theories can be
developed by definitions, which consists in naming another invariant structure by a new
symbol added to the language. Among aspects of the preserved meaning of the theory,
are the meta-notions of structure, invariant structure, and the range of theorems
expressible with the previous language.
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1.6. Logical connectives

We defined earlier the concept of logical connective. Let us now list the main useful
ones, beyond both nullary ones (Boolean constants) 1 and 0. (To this will be added the
conditional connective in 2.4).

Tautologies

Their properties will be expressed by tautologies, which are formulas only involving
connectives and Boolean variables (here written A, B, C), and true for all possible
combinations of values of these variables. So, they also give necessarily true formulas
when replacing these variables by any defining formulas using any language and
interpreted in any systems. Such definitions of Boolean variables by formulas of a theory
may restrict their ranges of possible values depending on each other.

Tautologies form the rules of Boolean algebra, an algebraic theory describing operations
on the Boolean type, itself naturally interpreted as the pair of elements 0 and 1 (but also
admitting more sophisticated interpretations beyond the scope of this chapter).

The binary connective of equality between Booleans is written = and called equivalence:
A = Bisread «A is equivalent to B».

Negation

The only useful unary connective is the negation —, that exchanges Booleans (—A is read
«not A»):

-1=0
-0=1
—(mA)= A
It is often denoted by barring the root of its argument, forming with it another symbol
with the same format:
x#ye (x=y) (xis notequal to y)
x¢ Ee ~(x€ E) (xisnotan element of E)
(A® B)= (A= —-B) (inequivalence)

Conjunctions, disjunctions

The conjunction A means «and», being true only when both arguments are true;
The disjunction v means «or», being true except when both arguments are false.
Each of them is :

Idempotent Commutative Associative Distributive over the other
(AnA)=A (BANA) = (AANB)  ((AANB)AC) = (AN(BAC)) (AN (BVvQO)) = ((AAB) Vv (ANO)
(AvA=A (BVA) = (AvB) ((AvB)VC) = (Av(Bv(C)) (AV (BAO) = ((AvB) A (AVO)

This similarity (symmetry) of their properties comes from the fact they are exchanged by
negation:

(Av By (mA N =B
(AN B)® (mAVvV =B

The inequivalence is also called exclusive or because (A« B) = ((AV B) A =(A A B)).

Chains of conjunctions such as (A A B A C), abbreviate any formula with more
parenthesis such as ((A A B) A O), all equivalent by associativity ; similarly for chains of
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disjunctions such as (Av Bv O).

Asserting (declaring as true) a conjunction of formulas amounts to successively
asserting all these formulas.

Implication

The binary connective of implication = is defined as (A = B) = ((—A) v B). It can be read
«A implies B», «A is a sufficient condition for B», or «B is a necessary condition for A».
Being true except when A is true and B is false, it expresses the truth of Bwhen A is
true, but no more gives information on B when A is false (as it is then true).

Moreover,

(A= B)*® (AN B
(A= B) e (nB= —A)

The formula =B = —A is called the contrapositive of A= B.
The equivalence can also be redefined as
(A= B) = ((A= B) A (B=A)).
Thus in a given theory, a proof of A = B can be formed of a proof of the first implication
(A = B), then a proof of the second one (B = A), called the converse of (A = B).

The formula A A (A = B) is equivalent to A A B but will be written A - B, which reads «A
therefore B», to indicate that it is deduced from the truths of A and A = B.

Negations turn the associativity and distributivity of A and v, into various tautologies
involving implications:

(A=(B=0)=((AnNB =0
(A=(Bv (O))=(A=DB V0

(A= (BnAC)=((A=B) A (A= 0)
(AvB=C=((A=Cn(B=10)
(A=B)=0C=((Av O A (B=10)
(AN(B=0C)=((A=DB)= (AN 0)
Finally,
(A= B) = ((ANC) = (BN O))
(A= B) = ((AvC) = (Bv()).

Chains of implications and equivalences

In a different kind of abbreviation, any chain of formulas linked by < and/or = will mean
the chain of conjunctions of these implications or equivalences between adjacent
formulas:

(A=B=0C=(A=B ArA(B=0))=A=0
(A=B=(C)=(A=B A(B=0)=A=C0()
0=A=A=1
(m4)=(A=0)=(A=0)
AANl)eoeA=(AVvD)=e(1=A)=A=1)
(ANB)=A= AV B)

1.7. Classes in set theory

In any system, a class is a unary predicate A seen as the set of objects where A is true,
that is «the class of all x such that A(x)».
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In a set theoretical universe, each set E'is synonymous with the class of the x such that
x€E (defined by the formula x€ E with argument x and parameter E). However, this
involves two different interpretations of the notion of set, that need to be distinguished
as follows.

Standard universes and meta-sets

Interpreting (inserting) set theory into itself, involves articulating two interpretations
(models) of set theory, which will be distinguished by giving the meta- prefix to the one
used as framework. Aside generic interpretations, set theory has a standard kind of
interpretations into itself, where each set is interpreted by the class (meta-set) of its
elements (the synonymous set and meta-set, i.e. with the same elements, are now
equal), and each function is interpreted by its synonymous meta-function.

This way, any set will be a class, while any class is a meta-set of objects. But some meta-
sets of objects are not classes (no formula with parameters can define them ; giving
examples would be paradoxical as it would mean defining something undefinable, yet
1.B introduces such possibilities); and some classes are not sets, such as the class of all
sets (see Russell's paradox in 1.8), and the universe (class of all objects, defined by 1).

Definiteness classes

Set theory accepts all objects as «elements» that can belong to sets and be operated by
functions (to avoid endless further divisions between sets of elements, sets of sets, sets
of functions, mixed sets...). This might be formalized keeping 3 types (elements, sets and
functions), where each set would have a copy as element, identified by a functor from
sets to elements, and the same for functions. But beyond these types, our set theory will
anyway need more notions as domains of its structures, which can only be conveniently
formalized as classes. So, let us keep "element" as the only type containing all objects,
and formalize the notions of set and function as classes named by predicate symbols:

Set = «is a set»
Fnc = «is a function»

In first-order logic, any expression is ensured to take a definite value, for every data of a
model and values of all free variables there (by virtue of its syntactic correction, that is
implicit in the concept of «expression»). But in set theory, this may still depend on the
values of free variables.

So, an expression A (and any structure defined from it) will be called definite, if it
actually takes a value for the given values of its free variables (seen as arguments and
parameters of any structure it defines). This condition is itself an everywhere definite
predicate, expressed by a formula dA with the same free variables. Choosing one of
these as argument, the class it defines is the meta-domain, called class of definiteness,
of the unary structure defined by A.

Expressions should be only used where they are definite, which will be done rather
naturally. The definiteness condition of (x € E) is Set(E). That of the function evaluator
fix) is Fnc(f) A x € Dom f.

But the definiteness of the last formula needs a justification, given below.

Extended definiteness

A theory with partially definite structures, like set theory, can be formalized (translated)
as a theory with one type and everywhere definite structures, keeping intact all
expressions and their values wherever they are definite : models are translated one way
by giving arbitrary values to indefinite structures (e.g. a constant value), and in the way
back by ignoring those values. Thus, an expression with an indefinite subexpression may
be declared definite if its final value does not depend on these extra values.

In particular for any formulas A and B, we shall regard the formulas A A Band A= B as
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definite if A is false, with respective values 0 and 1, even if B is not definite. So, let us
give them the same definiteness condition dA A (A = dB) (breaking, for A A B, the
symmetry between A and B, that needs not be restored). This formula is made definite
by the same rule provided that dA and dB were definite. This way, both formulas

AN(BAO
(ANBANC

have the same definiteness condition (dA A (A= (dB A (B = dQ)))).

Classes will be defined by everywhere definite predicates, easily expressible by the
above rule as follows.

Any predicate A can be extended beyond its domain of definiteness, in the form dA A A
(giving 0), or dA = A (giving 1).

For any class A and any unary predicate B definite in all A, the class defined by AAB is
called the subclass of A defined by B.

1.8. Binders in set theory

The syntax of binders

This last kind of symbol can form an expression by taking a variable symbol, say here x,
and an expression F which may use x as a free variable (in addition to the free variables
that are available outside), to give a value depending on the unary structure defined by
Fwith argument x. Thus, it separates the «inside» subexpression F having x among its
free variables, from the «outside» where x is bound. But in most cases (in most
theories...), binders cannot keep the full information on this unary structure, which is
too complex to be recorded as an object as we shall see below.

We shall first review both main binders of set theory : the set-builder and the function
definer. Then 1.10 will present both main quantifiers. Finally 2.1 and 2.2 will give
axioms to complete this formalization of the notions of sets and functions in set theory.

The syntax differs between first-order logic and set theory, which manage the ranges of
variables differently. In first-order logic, ranges are types, implicit data of quantifiers.
But the ranges of binders of set theory are sets which, as objects, are designated by an
additional argument of the binder (a space for a term not using the variable being
bound).

Set-builder

For any unary predicate A definite on all elements of a set E, the subclass of E defined
by Ais a set : it is the range of a variable x introduced as ranging over E, so that it can
be bound, from which we select the values satisfying A(x). It is thus a subset of E,
written {x€E | A(x)} (set of all xin E such that A(x)): for all y,

ye{x€E|Ax)} = (y € En A(y)

This combination of characters { € | } forms the notation of a binder named the set-
builder: {x€E | A(x)} binds x with range E on the formula A.

Russell's paradox
If the universe (class of all elements) was a set then, using it, the set builder could turn
all other classes, such as the class of all sets, into sets. But this is impossible as can be

proven using the set-builder itself :

Theorem. For any set E there is a set F such that F ¢ E. So, no set E can contains all
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sets.
Proof. F= {x€E|Set(x) N x¢ x} =(FE Fe(FEENF¢F)=(F¢ FANF¢E).n

This will oblige us to keep the distinctions between sets and classes.

The function definer

The function definer ( 3 » ) binds a variable on a term, following the syntax E 3 x+~ (x),
where

e xis the variable,

e Eis its range,

+ the notation "{(x)" stands for any term, here abbreviated (to describe the general
case) using the functor symbol ¢ defined by this term with argument x (and
possible parameters here kept implicit).

Being definite if {(x) is definite for all xin E, it takes then the functor ¢ and restricts its
domain (definiteness class) to the set E, to give a function with domain E. So it converts
functors into functions, reversing the action of the function evaluator (with the Dom
functor) that converted (interpreted) functions into their role (meaning) as functors
whose definiteness classes were sets.

The shorter notation x = {(x) may be used when E'is determined by the context, or in a
meta description to designate a functor by specifying the argument x of its defining
term.

Relations

A relation is a role playing object of set theory similar to an operation but with Boolean
values : it acts as a predicate whose definiteness classes (ranges of arguments) are sets
(so, predicates could be described as relations between interpreted types).

Now unary relations (functions with Boolean values), will be represented as subsets S of
their domain E, using the set-builder in the role of definer, and € in the role of evaluator
interpreting S as the predicate x~ (x € S). This role of S still differs from the intended
unary relation, as it ignores its domain E but is definite in the whole universe, giving 0
outside E. This lack of operator Dom does not matter, as E is usually known from the
context (as an available variable).

As the function definer (resp. the set-builder) records the whole structure defined by the
given expression on the given set, it suffices to define any other binder of set theory on
the same expression with the same domain, as made of a unary structure applied to its
result (that is a function, resp. a set).

1.9. Axioms and proofs

Statements

An expression is ground if its list of available free variables is empty (all its variables are
bound), so that its value only depends on the system where it is interpreted.

In first-order logic, a statement is a ground formula. Thus, a statement A will have a
definite Boolean value only depending on the choice of a system M that interprets its
language. We denote MFA the truth of A in M.

The axioms list of a theory is a set of statements, meant to be all true in some given
system(s) called models of the theory. Let us explain.

Realistic vs. axiomatic theories in mathematics and other sciences
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Apart from the distinction of nature (mathematical vs. non-mathematical), theories may
also differ by the intention of their use, between realism and formalism.

An axiomatic theory is a formally given theory T = (T, L, X) with an axioms list X, that
means to define the class of its models, as that of all systems M interpreting the
language L where all axioms (elements of X) are true, which will be denoted MET.

A realistic theory is a theory involved to describe either a fixed or a variable system,
i.e. a class of systems, seen as given from some independent reality. Its given axioms are
statements which, for some reason, are considered known as true on all these systems.
Such a theory is true if all its axioms are indeed true there. In this case, these systems
are models, qualified as standard for contrast with other (unintended) models of that
theory taken axiomatically.

This truth will usually be ensured for realistic theories of pure mathematics : arithmetic
and set theory (though the realistic meaning of set theory will not always be clear
depending on considered axioms). These theories will also admit non-standard models,
making their realistic and axiomatic meanings effectively differ.

Outside pure mathematics, the truth of realistic theories may be dubious (questionable):
non-mathematical statements over non-mathematical systems may be ambiguous (ill-
defined), while the truth of theories of applied mathematics may be approximative, or
speculative as the intended "real" systems may be unknown (contingent among other
possible ones). There, a theory is called falsifiable if, in principle, the case of its falsity
can be discovered by comparing its predictions (theorems) with observations. For
example, biology is relative to a huge number of random choices silently accumulated by
Nature on Earth during billions of years ; it has lots of "axioms" which are falsifiable and
require a lot of empirical testing.

Non-realistic theories outside mathematics (not called "axiomatic" by lack of
mathematical precision) would be works of fiction describing imaginary or possible
future systems.

Euclidean geometry was first conceived as a realistic theory of applied mathematics (for
its role of first theory of physics), then became understood as an axiomatic theory of
pure mathematics among diverse other, equally legitimate geometries in a mathematical
sense; while the real physical space is more accurately described by the non-Euclidean
geometry of General Relativity.

Provability

A proofof a statement A in a theory 7, is a finite model of a one-proof theory (reduction
of proof theory to the description of a single proof), having A as "conclusion" and
involving a finite list of axioms among those of T.

Suitable full formalizations of the concept of proof for first-order logic could be found by
specialists. Those can take the form of formalized (one-)proof theories (as axiomatic
theories), or proof verification algorithms (only requiring an amount of computing
resources related to the size of a given proof).

But most mathematical works are only partially formalized : semi-formal proofs are used
with just enough rigor to give the feeling that a full formalization is possible, without
actually writing it ; an intuitive vision of a problem may seem clearer than a formal
reasoning. Likewise, this work will present proofs naturally without explicit full
formalization : sometimes using natural language articulations, proofs will mainly be
written as successions of statements each visibly true thanks to previous ones,
premises, axioms, known theorems and rules of proof, especially those of quantifiers
(1.10). End of proof is marked by "m".

Yet without giving details of any proof theory, let us review some general properties.

We say that A is provable in T, or a theorem of T, and write T+ Aif a proof of Ain T
exists. In practice, we only qualify as theorems the statements known as such, i.e. for
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which a proof is known. But synonyms for "theorem" are traditionally used according to
their importance: a theorem is more important than a proposition; either of them may
be deduced from an otherwise less important lemma, and easily implies an also less
important corollary.

Any good proof theory needs of course to be sound, which means only "proving" always
true statements : provability implies truth in every model (where all axioms are true).

Logical validity

For a given language L, a statement A is called logically valid if it is provable with L,
without using any axiom. This might be written - A but for full accuracy it needs to be
written L + A (meaning that A is theorem of the theory made of L without axiom, thus of
any other theory containing L). Then A is true in every system interpreting L, thanks to
the soundness of the logical framework.

The simplest logically valid statements are the tautologies (whose Boolean variables are
replaced by statements); others will be given in 1.10.

A proof of A using some axioms can also be seen as a proof of (conjunction of these
axioms = A) without axiom, thus making this implication logically valid.

Refutability and consistency

A refutation of Ain T, is a proof of —A. If one exists (T + —A), the statement A is called
refutable (in T).

A statement is called decidable (in 7) if it is provable or refutable.

A contradiction of a theory Tis a proof of 0 in T. If one exists (T F 0), the theory Tis
called contradictory or inconsistent ; otherwise it is called consistent.

A refutation of A in Tamounts to a contradiction of the theory TAA obtained by adding A
to the axioms of T.

If a statement is both provable and refutable in T then all are, because it means that T'is
inconsistent, independently of the chosen statement:

FAAN-A)=0
(THA AN(TF B) = (TH AAB)
((TH A AN(TE =A) = (TH0).

So a contradiction can be presented as a proof of A with a refutation of A. In an
inconsistent theory, every statement is provable. Its framework being sound, such a
theory has no model.

Beyond the required quality of soundness of the proof theoretical part of a logical
framework, more remarkable is its converse quality of completeness : that for any
axiomatic theory it describes, any statement that is true in all models is provable. In
other words, any unprovable statement is false somewhere, and any irrefutable
statement is true somewhere. Thus, any consistent theory has existing models, but often
a diversity of them, as any undecidable statement is true in some and false in others.
Adding some chosen undecidable statements to axioms leads to different consistent
theories which can «disagree» without conflict, all truly describing different existing
systems. This resolves much of a priori divergence between Platonism and formalism
while giving proper mathematical definiteness to the a priori intuitive concepts of
"proof”, "theorem" and "consistency".

1.10. Quantifiers

A quantifieris a binder taking a unary predicate (formula) and giving a Boolean value.
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Bounded vs open quantifiers

A quantifier Q is called bounded when following the use format for binders in set theory
(1.8) : its range is a set given as an argument. For quantifiers this format is written (Q €
, ) filled as (Qx€E, A(x)) to take as input a unary predicate A, by binding a variable x
with range E on any formula here abbreviated as A(x) to mean it defines A with
argument x and possible parameters.

Primitively in first-order logic, the ranges of quantifiers are types (the same type as the
bound variable, not formally an argument). Any range E (type, class or set) may be
marked as an index (Qgx, A(x)), or deleted altogether (Qx, A(x)) when it is unimportant

or implicit as fixed by the context.

When set theory is formalized in first-order logic, the quantifiers from first-order logic,
ranging over the universe, and their variants ranging over classes (defined from them
below), are called open quantifiers to be distinguished from the restricted case of
bounded quantifiers (as sets are there particular cases of classes). In this context, a
formula is qualified as bounded if all its quantifiers are bounded. Only these formulas
will be accepted for some uses (1.A, 1.C, 2.1, 2.2).

Both main quantifiers

There are two main quantifiers (from which others will be defined in 2.4):

e The universal quantifier V means «for all»: (Vx€E, A(x)) is read «For all xin E,
A(x)».

e The existential quantifier 3 means «there exists»: (3x€E, A(x)) is read «There exists
x in E such that A(x)».

The bounded universal quantifier is definable from the set builder:
(Vx€E, A(x))  {x€E | A(x)} = E.

Quantifiers with any range can be defined in interpretations, seeing A as a function and
its Boolean values as objects:

Vx, Ax)) @ A= (x~1)
Ax, Ax)) @ A# (x~ 0)
(3x, A(x)) # (Vx, —A(x))

(Vx, 1) is always true. Quantifiers over classes can be defined as

(Ve x, A(x) = (Vx, C(x) = A(x))
(Acx A(x)) = (3x, C(x) A A(x)) = 3Icaa x, 1

Inversely any class is definable from a quantifier over it : Vx, (C(x) = 3¢y, x=Y).

Inclusion between classes

A class A is said to be included in a class B when Vx, A(x) = B(x). Then A is a subclass of
B, as Vx, A(x) = (B(x) A A(x)). Conversely, any subclass of B is included in B.
The inclusion of A in B implies for any predicate C (in cases of definiteness):

(Ve x, C(x)) = (Va x, C(x))

(Jax, C(x)) = 3px, C(x)

Acx A(x) = (3¢ x, B(x))

(Ve x, Ax)) = (Ve x, B(x))
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Rules of proofs for quantifiers on a unary predicate

Just like expressions were described by allowing to take already made expressions to
form new ones, the concept of proof may be formalized by using already known proofs
to form new ones. Here are some intuitively introduced rules, still without claim of full
formalization.

Existential Introduction. If we have terms t, t,... and a proof of (A(t) v A(t) v ...), then
dx, A(x).

Existential Elimination. If3x, A(x), then we can introduce a new free variable z with
the hypothesis A(z) (the consequences will be true without restricting the generality).

These rules express the meaning of 3 : going from some term to 3 then from 3 to z,
amounts to letting z represent that term (without knowing which, but they can be
gathered into one by the conditional operator). They give the same meaning to 3¢ as to

its 2 above equivalent formulas, bypassing (making implicit) the extended definiteness
rule for (C A A) by focusing on the case when (C(x) is true and thus A(x) is definite.

While 3 appeared as the designation of an object, V appears as a deduction rule: V¢ x,
A(x) means that its negation 3¢ x, —A(x) leads to a contradiction.

Universal Introduction. If from the mere hypothesis C(x) on a new free variable x we
could deduce A(x), then V¢ x, A(x).

Universal Elimination. IV x, A(x) and t is a term satisfying C(t), then A(t).

Introducing then eliminating V is like replacing x by ¢ in the initial proof.

Some logically valid formulas

The above rules can be used to justify the following logically valid formulas

((Vex, A(x)) A (Ve x, A(x) = B(x))) = (Ve x, B(x))
(Acx AX) A (Yex, A(x) = B(x))) = (¢ x, B(x))
(Ve x, Ax)) A (3cx, B(x)) = (3cx, Ax) A B(x))
(Ve x, A(x)VB(x)) = (Ve x, A(x)) v Q¢ x, B(x)))
(Vax,Vpy, R(x,y5) = (YBYy, Va x, R(x,y))
(3ax 3By, R(x,y)) @ @py 34 x, R(x,y))
(F3ax, Vpy, R(x,y)) = Vpy, 34 x, R(x,y))
Vx, (Vy, R(x,y)) = R(x,x) = (y, R(x,y))

We shall use the following abbreviations, also similarly with bounded quantifiers:

e (Vcx,y,) means (Ve x, Ve y, ) and so on for more variables with the same range.

e Acx,y, ) means (3¢ x, ¢ y, ) (same remark).

e (Vcx#y, ) means (Vo Xx,y, x££y =)

e Acx2y, ) means (cx,y, X2y A )

e (¢ x, A(x) -~ B(x)) means (¢ x, A(x)) A (Vo x, A(x) = B(x)), while it implies but is not
always equivalent to (3¢ x, A(x) A B(x)).

Logical validity depends on language because, with only one type

(L F 3x, 1) = (a constant symbol exists in L)

(With more types the condition is more complicated; but as most useful theories require
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all types to be nonempty, the dependence on language may be ignored in practice)
Completeness of first-order logic

First-order logic was found complete as expressed by the completeness theorem, which
was originally Godel's thesis : from a suitably formalized concept of «proof», the
resulting class of (potential) theorems A of any first-order theory T was found to be the
"perfect" one, coinciding with the class of universally true statements (true in all models

M):

VA (TH A) = (VM, (MET)=(MEA))

Such a proof theory for first-order logic is essentially unique: the equivalence between
any two sound and complete proof theories as concerns the existence of a proof of a
statement in a theory, concretely appears by the possibility to translate any "proof" for
the one into a "proof" for the other.

This quality of first-order logic confirms its central importance in the foundations of
mathematics, after its ability to express all mathematics : any logical framework can
anyway be developed from set theory (and more directly, any theory from any
framework can be somehow interpreted in set theory), itself expressible as a first-order
theory.

The proof of the completeness theorem, which requires the axiom of infinity (existence
of N) will consist in building a model of any consistent first-order axiomatic theory, as
follows (details in 4.6). The (infinite) set of all ground terms with operator symbols
derived from the theory (those of its language plus others coming from its existence
axioms), is turned into a model by progressively defining each predicate symbol over
each combination of values of its arguments there, by a rule designed to keep
consistency.

This construction is non-algorithmic : it is made of an infinity of steps, where each step
may involve an infinite knowledge (of whether the given predicate on given arguments,
seen as a candidate additional axiom, preserves consistency with previously accepted
ones). Actually, most foundational theories such as set theories, do not have any
algorithmically definable model.

1.11. Second-order universal quantifiers

First-order logic can be developed to allow the use of variable structure symbols as
abbreviations of fixed expressions defining these structures with variable parameters,
but this way can only bind them on some restricted ranges depending on the chosen
expressions (more comments in 1.D).

Now let us call second-order quantifier, a quantifier binding a variable structure symbol
over the range of all structures of its symbol type. This may either be conceived as the
range of all definable ones (by any expressions with any number of parameters) or as
the full set of all such operations (relating the given interpreted types), which exist... in
the universe. Using second-order quantifiers means working in some wider logical
framework such as some version of second-order logic (described in part 5), depending
on details.

As we shall do for the axioms of equality (below) and for set theory (in 2.1 and 2.2), a
theory may be first expressed in second-order logic for intuitive reasons, before formally
interpreting this as a convenient meta level tool to abbreviate a first-order
formalization, as follows.

Let T be a first-order theory, T'its extension by a structure symbol s (without further
axiom) and F a statement of 7' (in first-order logic) also denoted F(s) when seen as a
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formula of T using the variable structure symbol s in second-order logic.

Second-order Universal Introduction. If T'—F then T entails the second-order
statement (Vs, F(s)).

This holds for any model and the full set theoretical range of s, independently of the
universe in which models and structures s are searched for.

Second-order Universal Elimination. Once a second-order statement (Vs, F(s)) is
accepted in a theory T, it is manifested in first-order logic as a schema of statements,
that is an infinite list of statements of the form (Vparameters, F(s)) for each possible
replacement of s by a defining expression with parameters.

Applying second-order universal elimination after second-order universal introduction,
means deducing from T a schema of theorems, each one deducible in first-order logic by
replacing s by its respective definition in the original proof.

Incompleteness of second-order logic

The above rules of proof, which will suffice for our needs, are clearly sound, but unlike
first-order logic, second-order logic does not admit any sound and complete proof
theory. In the above, the only complete rule of proof is that second-order universal
elimination completely formalizes the consequences of YV meant as ranging over
definable structures. No rule can exhaust the consequences of applying V to the range of
"all structures" (including undefinable ones) for the following reason whose details will
be developed later.

A theory is called complete if it essentially determines its model. The exact definition is
that all models are isomorphic to each other (3.3); but let us understand now that it both
determines all properties of its model (values of first-order statements) and excludes
non-standard models.

Arithmetic (the theory describing the system N of natural numbers with four symbols O,
1, +, - ) can be formalized as a complete theory in second-order logic (axioms listed in
4.3 and 4.4). The only component of this formalization beyond first-order logic is the
axiom of induction, using a V ranging over "all unary predicates" (including undefinable
ones). However the incompleteness theorem (1.C) will refute the possibility for any
algorithm to give the correct values of all first-order statements of arithmetic.

But the range of the mere definable structures of a type cannot be completely defined
either for the same reason, since defining the exact infinite range of all possible defining
expressions, amounts to defining N.

Axioms of equality

In first-order logic with given types and a given language, some statements involving =
are valid (always true) for the range of interpretations keeping = as the = predicate of
set theory, but no more for the larger range of interpretations letting it become any
other predicate. A possible list of axioms of equality, is a list of some of such statements
which suffice to imply all others in this context.

One such list consists in the following 2 axioms per type, where the latter is meant as an
axiom schema by second-order universal elimination of the variable unary predicate A:

1. Vx, x = x (reflexivity)
2.VAVxy, (x =y N A(y)) = A(x).

Variables x and y can also serve among parameters in definitions of A. This can be
understood by re-ordering quantifiers as (Vx,y, VA), or as deduced from the use with an
A with parameters a, b, by adapting a logically valid statement from 1.10 :
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Va,b, (Vx,y, R(a, b, x,y)) = R(a, b, a,b)

Diverse definitions of A give diverse statements (assuming reflexivity):

Statement Quality of =  A(u) used
3.Vx,y, x=y=y=X Symmetric y=u
4.Vx,y,z, x=yANy=2)=x=2Z Transitive u=z
5.VEVxy, x=y=fx) = fy) flu) = y)
6. VA, Vx,y, x = y= (A(x) = A())) -A(u)
7.9x,y,z, (x=yANz=y)=z=X Left Euclidean zZ=1u

5. is a schema of statements with franging among functors between any two types.
6. can also be deduced from symmetry.

Remark. (1.A7.) = 3., then 3. = (4. @ 7) so that (1.A7.) © (1.A3.A4.).
We shall abbreviate (x=yAy=2)asx=y=z

Another possible list of axioms of equality consists in statements 1. to 5. where fand A
range over the mere symbols of the language, each taken once per argument : the full
scheme of 2. is implied by successive deductions for each occurrence of symbol in A.
This will be further justified in 2.9 (equivalence relations).

Defining new binders

A new free variable symbol x defined by a given term ¢ can be introduced, either
declared as a separate line of proof (x = t) serving as axiom, or inside a line as (x = ¢
...). This can be justified by the rules as

Vx, x=x)~t=t-3Ax, (x=1t-...).

Binding one parameter, the definition of a functor symbol fby a term here abbreviated ¢
with variable x (which will justify this abbreviated notation ¢ like a functor symbol), is
declared by the axiom

Vx, (x) = H(x).

Similarly, operator symbols can be defined by binding multiple parameters, and classes
and other predicates can be defined in the same way replacing = by <.

Finally, new binders B to be used in a first-order theory T (namely in set theory
formalized with its translation as a first-order theory) can be defined by any expression
here abbreviated as F(A) as it involves, beyond the language of T, a symbol A of variable
unary structure (whose argument will be bound by B). Such a definition can be declared
by this second-order axiom :

VA, (Bx, A(x)) = F(A)

where = becomes = if values are Boolean. By second-order universal elimination, this
comes down to a schema of definitions in first-order logic : for each defining expression
for A, the expression (Bx, A(x)) is defined like a structure symbol, by the expression
defining F(A), obtained by replacing A by its defining expression inside the expression F.
So its available free variables are the parameters of F plus those of A.

Philosophical aspects of the
foundations of mathematics
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Let us complete our initiation to the foundations of mathematics by more philosophical
aspects : how the mathematical realm is structured by a growing block flow of its own
"time", independent of our time.

e First, 1.A to 1.C will explain this "time" as affecting model theory ;

¢ then, its role in set theory (clarifying the distinction of sets among classes) will be
explored in 1.D, 2.A, 2.B, 2.C;

e finally, a more detailed description in terms of ordinal analysis is given in a
separate article, assuming familiarity with ordinals.

These complements are not needed to continue with Part 2 (2.1 to 2.10 except for small
remarks in 2.2, 2.7 and 2.10), Part 3 and more, while 2.A-2.C assumes both Part 1 down
to 1.D and Part 2 down to 2.7.

1.A. Time in model theory

The time order between interpretations of expressions

The interpretations of expressions of a theory Tin a model M depend on each other,
thus come as calculated after each other. This time order follows the construction order
from sub-expressions to expressions containing them.

For example, to make sense of the formula xy+x=3, the free variables x and y must take
values first; then, xy takes a value, obtained by multiplying them. From this, xy+x takes
a value, and then the whole formula (xy+x=3) takes a Boolean value, depending on the
values of x and y. Finally, taking for example the ground formula Vx, 3y, xy+x=3, its
Boolean value (which is false in the world of real numbers), «is calculated from» those
taken by the previous formula for all possible values of x and y, and therefore comes
after them.

The interpretations of a finite list of expressions may be gathered by a single other
expression, taking them as sub-expressions. This big expression is interpreted after
them all, but still belongs to the same theory.

Now for a single expression to handle an infinite set of expressions (such as the range of
all expressions of T, or just all terms or all statements), these expressions must be
treated as objects (values of a variable). If T'is a foundational theory, it can define (or
construct) a system looking like this, so that, in any standard model of T (in a sense we
shall specify later), this definition will designate an exact copy of this set of expressions.

However, the systematic interpretation of all expressions of T'in M cannot fit any
definition by a single expression of Tinterpreted in the same M. Namely, this forms a
part of the combined system [T, M] beyond M, to be described by a one-model theory
(1MT) which, even if it can be developed from 7, anyway requires another
interpretation, at a meta level over M.

The infinite time between models

Without trying to formalize the model theory MT of first-order logic (which will be
approached in the next sections) let us sketch a classification of its components (mixing
notions, structures and axioms) into parts according to what they describe. Most issues
are unchanged by restricting consideration to an 1MT, with model a single system [ T, M]
of a theory Twith a model M, when these T and M (as may be specified by the chosen
variant of 1MT) are big enough to roughly contain any theory and any system.

e A Theory theory TT (and similarly a one-theory theory 1TT) itself made of
successive groups of components which roughly follow the layers of the theory T'it
describes :

o A description of "abstract types" and "symbols" ;


http://settheory.net/foundations/
http://settheory.net/foundations/
https://en.wikipedia.org/wiki/Growing_block_universe
https://en.wikipedia.org/wiki/Growing_block_universe
https://settheory.net/Math-relativism
https://settheory.net/Math-relativism
http://settheory.net/sets/axioms
http://settheory.net/sets/axioms
http://settheory.net/foundations/metamathematics
http://settheory.net/foundations/metamathematics
http://settheory.net/foundations/theories
http://settheory.net/foundations/theories

o The described notions of "expressions" and "statements" ;

o 1TT may be seen as the extension of TT by unary predicate symbols T, L, X
which respectively select the classes of components of T (its types, symbols
and axioms) from the given ranges of "all available ones"; or only X if "types"
and "symbols" in TT only meant those of the considered theory.

o Proof theory extends 1TT by the notion of "proof", and thus also those of
"theorem" and "contradiction". This may also be simply constructed from
TT's notion of "proof" for logically valid statements, since a proof of a
theorem amounts to a proof of logical validity of its implication from some
axioms.

o A Systems Theory describing M by interpreting there the types and structure
symbols of T given from 1TT (if the types list and the language of T are finite and
explicitly given then the role of its one-system theory may be played by T itself;
otherwise it involves the meta-notions of "types" and "structures").

e The description of the interpretations (attribution of values) of all expressions of T
in M, for any values of their free variables; thus also, interpretations of all
statements. This is needed to express MET (the truth of all axioms of T'in M) if the
axioms list is infinite.

This last part describes a part of [ T, M] which is determined by the combination of both
systems T and M but not directly contained in them : it is built after them.

The metaphor of the usual time

I can speak of «what I meant at that time»: it has a sense if that past saying had one, as
I got that meaning and I remember it. But mentioning «what I mean» in isolation, would
not itself inform on what it is, as it might be anything, and becomes absurd in a phrase
that modifies or contradicts this meaning («the opposite of what I mean»). Mentioning
«what I will tell tomorrow», even if I already knew what I will say, would not suffice to
already provide its meaning either: in case I will mention «what I told about yesterday»
(thus now) it would make a vicious circle; but even if the form of my future saying
ensured that its meaning will exist tomorrow, this would still not provide it today.
Regardless my speculations, the actual meaning of expressions yet to be uttered will
only arise in their time, from the context that will come.

By lack of interest to describe phrases without their meaning, we'd rather focus on
previously uttered expressions, while just "living" the present ones and ignoring future
ones. So, my current universe of the past that I can describe today, includes the one I
could describe yesterday, but also my yesterday's comments about it and their meaning.
I can thus describe today things outside the universe I could describe yesterday.
Meanwhile I neither learned to speak Martian nor acquired a new transcendental
intelligence, but the same language applies to a broader universe with new objects. As
these new objects are of the same kinds as the old ones, my universe of today may look
similar to that of yesterday; but from one universe to another, the same expressions can
take different meanings.

Like historians, each mathematical theory can only «at any given time» describe a
system of past mathematical objects. Its interpretation in this system, «happens»
forming a mathematical present outside this realm (beyond this past). Then, describing
this act of interpretation, means expanding the scope of our descriptions : the model
[7,M] of 1MT, encompassing the interpretations of all expressions of T'in the present
system M of past objects, is the next realm of the past, coming once the infinite totality
of current interpretations (in M) of expressions of T"becomes past.

The strength hierarchy of theories

While these successive models are separated by "infinite times", they form an endless
succession, reflected by an endless hierarchy between the theories which respectively
describe them. This hierarchy will be referred to as a comparison of strength of theories
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(this forms a preorder). Namely, a theory A is called stronger than a theory B if (a copy
of) B can be found as contained in A or a possible development of A; they are as strong if
this also goes vice-versa. Indeed, developments are mere "finite moves" neglected by
the concept of strength which aims to report "infinite moves" only. (Other definitions of
strength order, often but maybe not always equivalent, will come in 2.C).

Many strengths will be represented by versions of set theory, thus letting us call
"universes" these successive models. So, any set theory being meant as describing some
universe of «all mathematical objects», this merely is at any time the current
«everything», made of our past, while this description itself forms something else
beyond this «everything».

Strengthening axioms of set theory

While we shall focus on set theories accepting other notions than sets (as announced in
1.4), the difference with traditional set theories (with only sets as objects) can be
ignored, as any worthy set theory formalized in our way is as strong as one with only
sets, and similarly vice versa.

Our set theories, beyond their common list of basic, "necessary" symbols and axioms
(2.1 and 2.2) will mainly differ by strength, according to their choices of optional
strengthening axioms (sometimes coming with primitive symbols), whose role will be
further commented in 1.D and 2.C. The main strengthening axioms are :

o Infinity (4.4) : there exists an infinite set, or equivalently a set N of all natural
numbers;

e The Specification schema amounts to generalizing the use of the set builder to
unary predicates A defined using open quantifiers. But this amounts to recognizing
the universe and other classes as kinds of sets (though not objects of any single
kind) and hides the possible dependence of the result on the universe (range of all
objects), which will often be conceived as variable (2.A). These oddities are usually
limited by rejecting the set builder notation as inappropriate, leaving this as an
axiom schema
(VA)VsetE, dgetF, VX, x € F = (X€EE N A(X))

¢ Out of the scope of this introduction, the Collection schema implies the
Replacement schema, which implies the Specification schema, with possible
converses depending on other axioms.

e Powerset (2.7)

The main foundational theories

As a simplified introduction, here are some of the main foundational theories (all first-
order theories, even "second-order arithmetic"), ordered by increasing strength (while
infinities of other strengths also exist between and beyond them).

e Let us call Finite Objects theories (FOT) these 3 theories which are of the same
strength:
o First-order arithmetic (Z1), reducing induction to an axiom schema by

second-order universal elimination.
o Finite Set Theory (FST), with Specification schema and negation of Infinity
o Theory theory (TT).

* Several subsystems of second-order arithmetic, equivalent to versions of set
theory featuring successively more elaborate results of ordinary mathematics
(analysis...); Model theory (MT), which can interpret all expressions in all
countable systems (= made of N with any structures given as sets), is among the
weakest of these.

¢ Second-order arithmetic (Z;), formalizable as set theory with Infinity and

Specification (does Replacement make it stronger ?), or (almost equivalently but in
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a different formalism) Infinity and the powerset of only N;

e Mc Lane set theory, with Infinity and Powerset, is the comfortable one for most
needs;

e Zermelo set theory is slightly stronger, with Infinity, Powerset and Specification.

o Zermelo-Fraenkel set theory (ZF) is much stronger, with Infinity, Powerset and
Replacement; it implies Collection.

The hardest part of Godel's proof of his famous incompleteness theorems, was to
develop TT from Z1, so that the incompleteness results first proven for TT also affect Z1.

This difficulty can be skipped by focusing on TT and FST, ignoring Z1. Developing TT
from FST is easy (once TT is formalized), but developing either from Z is harder. A
solution is to develop the "sets only" version of FST from Z1 by defining the BIT

predicate (to serve as €) and proving its basic properties ; the difficulty to do so can be
skipped by accepting these as primitive.

1.B. Truth undefinability

Continuing our introduction to the big picture of the foundations of mathematics, let us
sketch a particular aspect of the time ordering of interpretations : the inability of self-
describing theories to define (predict) the values of their own statements. This will show
the strictness of the strength hierarchy of theories, and will be a key step in the proof of
the incompleteness of arithmetic (and thus second-order logic).

Standard objects and quotes

Objects in standard models of a FOT will themselves be called standard, which
intuitively means "truly finite" : they can in principle be mathematically quoted, i.e. for
each such object x we can form a ground term, here abbreviated by the notation "x,
which designates x in the standard model. So, the standard model of arithmetic N is
made of standard numbers, values n of quotes "n'looking like 1+...+1 (actual details
will be studied in Part 4).

References to the truth of statements and the meaning of classes of FOTs will be
implicitly meant as their standard interpretations unless otherwise stated.

Non-standard models can be understood as extensions of the standard one: they still
contain all standard objects, i.e. copies of objects of the standard model, defined as
values of their mathematical quotes; but differ by having more objects beyond these,
called non-standard objects (not quotable). Non-standard numbers will also be called
pseudo-finite : they are seen by the theory as «finite» but with the schema of properties
of being «absolutely indescribably large» : larger than any standard number, thus
actually infinite.

In expressions of statements or classes of foundational theories, it usually makes no
difference to allow finite-valued parameters (= whose type belongs to a FOT part of the
theory) insofar as they are more precisely meant to only take standard values, and can
thus be replaced by their quotes.

In a non-standard model of FST, standard sets are the truly finite sets with only standard
elements. But this does not define standardness, which cannot either be defined using
quotes (which are infinitely many meta-objects). As will be clear in Part 4, the axiom
schema makes standardness undefinable by any formula of FOTs: the meta-set of
standard objects in a non-standard model is not a class, and thus (for FST) not a set.

Truth Undefinability theorems

Any well-describable theory T stronger than TT (i.e. able to express TT) can also
describe itself : the definitions of the T, L, X composing T form the development from TT
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(and thus from 7) of the version of 1TT describing 7. But this will only be fully used for
incompleteness theorems (1.C). First, truth undefinability will need TT (with general
notions of expressions) but not X (distinguishing axioms among statements; usual T and
L being finite raise no issues).

(As a bare version of 1TT with undefined T, L or X would not be a proper development
from TT, its working would require to add the use of T, L, Xin the axiom schema : of
induction for Z1, or of specification for FST...).

Let S be the meta-class of statements of 7, and S the class defined in 1TT and thusin T
to play the role of S in any model M of T. For any statement FeS, its quote " F'
designates in M the element of S playing the role of that statement : 1TTF (" F'€S).

Let Sq be the meta-class of formulas of Twith only one free variable (with range S but

this detail may be ignored), meant to define invariant unary predicates over S. Now
none of these can match the truth of statements in the same model:

Truth Undefinability Theorem (weak version). For any model M of T, the meta-class
{A€S | MFA} of statements true in M, differs from any invariant class, in M, of objects
"statements":

VCeS1, VMET, JA€ES, ME (A« C("A")
Truth Undefinability Theorem (strong version). VCeS, JA€S, T+ (A« C("A").

The tradition focuses on proving the strong version (details in Part 5) : the proof using
the liar paradox provides an explicit A, defined as = C(" A™") where the quote "A™is
obtained by an explicit (finitistic) but complex self-reference technique. So it gives the
"pure" information of a "known unknown" : the necessary failure of C to interpret an
explicit A "simply" made of —=C over a complex ground term.

But the weak version can be proven another way, from the Berry paradox (details
involving subtleties in the foundations of arithmetic were moved to Part 4) : from a
definition of the truth of statements one can define the predicate between formulas and
numbers telling which formula defines which number, and thus define a number in the
style of "the smallest number not definable in less than twenty words" which would lead
to contradiction.

This proof is both more intuitive (as it skips the difficulties of self-reference), and
provides a different information: it shows the pervasiveness of the "unknown unknown"
giving a finite range of statements A which are "less pure" in their kind but less complex
in size, among which an "error" must exist, without specifying where (it depends on
which number would be so "defined").

The hierarchy of formulas

The facts of truth undefinability, undecidability or other indefiniteness of formulas can
be understood by analysing their syntax, as mainly coming from their use of binders: the
most definite formulas are those without binder ; then, intuitively, the definiteness of a
given binder is a matter of how set-like its range is. In set theories, open quantifiers
(ranging over the universe or a class) are less definite than bounded quantifiers and
other binders whose range is a set.

For FST, the essential condition for a class to be a set is finiteness. Similarly in
arithmetic, quantifiers can be bounded using the order : (3x<k, ) and (Vx<k, )
respectively abbreviate (3x, x<k A ) and (Vx, x<k = ) and the same for <.

The values of bounded statements of FOTs, are independent of the model as their
interpretation only involves standard objects. Any standard object of a FOT has all the
same bounded properties (= expressed by bounded formulas with no other free
variable) in any model.
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Refined versions

The proofs of the truth undefinability theorems, explicitly giving some A on which any C
differs from truth, prove more than their mere conclusions: they somehow specify the
extent of this difference. Namely :

¢ the strong version just lets A be =C with argument replaced by an explicit ground
term (without binder but quite complex);

o the Berry paradox shows the existence of some A among statements which are TT-
provably equivalent to big connectives over instances of C applied to diverse such
terms (but simpler).

This latter equivalence is done by developing some FOT-bounded quantifiers, thus with
finite ranges ; its proof only uses axioms of TT, though C can use a broader language.
Therefore if C is definite on the whole class of statements of T, is constant along TT-
provably equivalent statements and faithfully processes connectives over instances of C,
then C differs from truth on some C(" B"), i.e.

3IBeS, C("B") « C("C("BM")

For either case (weak or strong), in some sense, A needs no more quantifier of any kind
than C. So any bounded C differs from truth on some bounded A. In FOTs this is quite a
bad difference, but not surprising by lack of bounded candidate truth-approaching C to
think of.

Truth predicates

Let us call truth predicate of a theory T described by another theory T', any predicate C
(defined by T'with possible parameters) over the class S of statements of 7, such that

1. VA€X, C(A) i.e. it contains all axioms of T
2. VAES, C(A)v C(—A)
3. Cis consistent.

Equivalently, 2. and 3. can be replaced by

2. VAES, C(A) # C(—A)
3. C contains all logical consequences of any conjunction of its own elements.

The existence of a truth predicate of T obviously implies its consistency. But the
converse is also provable in TT, making these equivalent:

If Tis consistent then a truth predicate of T can be (TT-provably) TT-defined from it in
this way:

1. Take all statements in an arbitrary order;
2. Add each to axioms if consistent with previously accepted axioms.

Such a definition is not algorithmic (the condition "if consistent" cannot be checked in
finite time), but it involves no other parameter than T and an order on its language.

Properties of models

The (first-order) properties of a model M of T, are the statements of T true in M.

The class of properties of any model of T'is a truth predicate of 7. However this does not
always make sense, due to truth undefinability : TT lacks general definitions for the
classes of properties of infinite systems. Systematic meaningfulness only comes in
strictly stronger frameworks such as MT, able to hold as sets some infinite classes (such
as classes of finite objects) serving as types (classes of objects) in M.
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Yet the Completeness theorem, while simply expressed in set theories with Infinity, also
appears in TT as a schema of theorems, which for any definition of a consistent theory,
conceives a model as a class of objects with TT-defined structures. Our simple
construction (4.6) ensures the truth of axioms and ignores other statements. By
following it, all statements become interpreted as special cases of TT-statements (with
parameters T, L, X composing 7, to be replaced by their definitions). The truth predicate
so obtained on that class may not be TT-invariant, but is anyway MT-invariant provided
that Twas (as MT can define truth over the class of TT-statements).

But applying the Completeness theorem to a given truth predicate (which can be TT-
defined), proves in TT the existence of a model whose properties conform to it, though
its interpreted notions are not sets. This presents in 2 steps how to construct a model
with TT-invariant properties, while the same goal is also achieved by the single but
harder construction of the traditional proof (by Henkin) of the completeness theorem.

1.C. Introduction to incompleteness

Existential classes

Let us qualify a formula as existential if written 3x, A(x), with an open 3 as root (or
several, which can be re-expressed as one) followed by a bounded formula A. In this
section this will be meant in FOTs only. Existential statements amount to halting
conditions of algorithms processed by abstract "computers"” with unlimited resources:

¢ Any such 3x, A(x) is equivalent to the halting of an algorithm that enumerates all x,
interprets A on each, and stops when it finds A true there;

e The halting condition of any algorithm is an existential statement 3¢, A(f) where
A(t) says it halts at time ¢ (details are of course much more complex).

Similarly, an existential class of a FOT, i.e. defined by an existential formula 3y, A(y,x),
can be equivalently qualified as algorithmically defined, i.e. the range of all outputs
given on the way by an endlessly running algorithm; it defines truth over the existential
statements obtained from it by replacing x by any quote.

Provability predicates

Provability concepts are linked to existential classes as follows.

e The truth of an existential statement (3x, A(x)) implies its FOT-provability (by
existential introduction over the quote of x), so both are equivalent;

* Any effective concept of theorem (class of provable statements s) of any theory in
any framework, must be an existential class (Ip, V(p,s)) for some V(p,s) meaning
that pis a valid proof of s.

Usual existential classes of "theorems" among first-order statements with a given
language, are formed in 2 steps:

1. Give a first-order theory with an existential class of axioms (usual ones, including
all theories from our list, even have bounded definitions);
2. Apply there the concept of proof of first-order logic.

The resulting class of theorems is independent of the chosen formal definition for a
sound and complete concept of proof in first-order logic, i.e. any two of these leading to
FOT-formulas V, V' expressing proof verification for the same theory (defined by symbols
T, L, X), they give the same theorems :

FOT (+ symbols T, L, X with axioms) + Vs, (3p, V(p,s)) = (Ap, V(p,s))
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As the first step defines T, L, X in FOT, it simplifies the above as FOT - ...

Conversely, if Cis an existential class of "theorems" among first-order statements of a
theory, and contains the first-order logical consequences of any conjunction of its
elements (intuitively, the proving framework contains the power of first-order logic),
then Cis the class of T-provable statements by first-order logic, for some algorithmically
defined first-order theory T: at least trivially, the theory which takes C as its class of
axioms.

A theory T stronger than FOT will be qualified as FOT-sound if, on the class of FOT-
statements, T-provability implies truth (in the standard model of FOT).

The diversity of non-standard models

Beyond the simple fact of existence of models, the diverse ways to construct them and
their use cases (theories) will provide a diversity of models, including non-standard
models of foundational theories, more or less similar to standard ones.

Even with identical first-order properties (a condition we can adopt by taking as
"axioms" all true statements from a given model, while this is not TT-invariant for
standard models of theories containing TT), models can differ by meta-level properties :
this will be seen for arithmetic in 4.7, and for any theory with an infinite model by the
Lowenheim-Skolem theorem.

But truth undefinability implies that some constructed models also differ from the
standard one by first-order properties, because of their invariance. This still goes for
"almost complete" foundational theories (e.g. approaching a complete second-order
theory by second-order universal elimination).

All foundational theories being FOT-invariant, have models with FOT-invariant
properties, thus non-standard already on FOT-properties.

Any consistent MT-invariant T stronger than MT, has MT-invariant (and MT-
interpretable) models, thus with a non-standard class of MT-properties (once a concept
of "standard model of MT" would be clarified...). Now if Tis FOT-sound, adding all true
FOT-statements to axioms still forms a consistent and MT-invariant theory, giving models
of T'with the standard class of FOT-properties despite non-standard other MT-properties
(and a most likely non-standard FOT-model).

First incompleteness theorem

Let C be a class of "T-provable" FOT-statements for an algorithmically defined theory T
able to express these (i.e. Cis an existential class of FOT-statements containing the first-
order logical consequences of any conjunction of its elements). By weak truth
undefinability, C being FOT-invariant must differ from truth : C("A") « A for some A.

If Tis FOT-sound (C("A™) = A for all A) then for each A on which C differs from truth, A
is T-unprovable but true, and thus T-undecidable. Thus T'is incomplete (leaving
undecidable some FOT-statements). Hence the incompleteness of second-order logic
(1.11). This gets close to, yet does not give, the famous

First incompleteness theorem. Any algorithmically defined and consistent theory
stronger than FOT is incomplete.

The gap may be overlooked, as it is a worse defect for a theory to be FOT-unsound than
to be incomplete. Yet it can be narrowed using our refined version of weak truth
undefinability as follows.

Assume T stronger than FOT (i.e. C contains all axioms of FOT, and thus its theorems).
Then for all existential A, and thus for A of the form C(B) for any B,

A= (Ais FOT-provable) = C("A")
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If T'is consistent and decides all C(A) then C faithfully processes connectives over
instances of C (deducing results from proven values of C, may these be incorrect). So:

o If T'is complete (C(B)v C(—B)) then it proves its own inconsistency, i.e. C(" C(" 0)").

o If Tis FOT-sound, then C coincides with truth on all existential statements, thus on
all C(A). So there exist T-undecidable C(A). Such C(A) is false but T-irrefutable, i.e.
A is T-unprovable but this unprovability is itself T-unprovable.

(The literature reports possibilities to prove both incompleteness theorems from the
Berry paradox, but these seem very complicated, beyond the scope of this introduction.)

Second incompleteness theorem

The second incompleteness theorem (whose proof uses the strong version of truth
undefinability) says C(A) is T-irrefutable for all statements A just if Tis consistent :

—~C(0") = VAES, =C("—~C™":A)

where the colon ( : ) means substitution between described expressions so that ("B™""a")
= "B(a)". This is summed up by the case A="0", namely CC—-C("0") ") = C("0") i.e. the
consistency of T, if true, is T-unprovable.

Rephrasing this by completeness, if T has no standard contradiction then it has a model
which contains a non-standard contradiction (and thus contains no verifiable model).

Also equivalently, T cannot prove the existence of any truth predicate over a notion it
describes as the set of its own statements. This is somehow explained, though not
directly implied, by weak truth undefinability, which prevents using the current model
as an example, since the truth over all standard statements there cannot be T-defined as
any invariant predicate (not even speculatively i.e. only working in some models).

Proving times

As the T-provability of any statement A cannot be T-refuted in any way, such as any
amount of vain search for T-proofs, that means T keeps "seeing a chance" for A to be T-
provable by longer proofs. A theory T’ strictly stronger than T can refute the T-
provability of some A (such as by finding a T-refutation of A) but remains indecisive on
others (such as A = the inconsistency of T7).

Any FOT-sound foundational theory (as a knowledge criterion) will always leave some
existential statements practically undecidable, may they be actually true or false, the
search for proof or refutation appearing vain within given limits of available computing
resources :

¢ No limit to the expectable size of the smallest proof(s) (or example x such that B(x)
for some bounded B) can be systematically expressed (predicted) just depending
on the size of the theorem (or the size of B, beyond the smallest ones) : such proofs
may be too big to be stored in our galaxy, or even indescribably big. (An example
of statement expected to require a very big proof is given as object of Godel's
speed-up theorem).

+ Undecidable (thus false) existential statements (3x, A(x)) only have non-standard
examples of x such that A(x); but these look very similar to the true case, as non-
standard objects are precisely those appearing "indescribably big" in the non-
standard model containing them (just extending the range of meant "describable
sizes" to all standard ones).

As another aspect of the same fact, provability predicates are inexpressible by bounded
formulas (due to truth undefinability, as they are equivalent to truth in the class of
bounded statements).

Intuitively, to interpret truth over existential statements (or any 7-provability predicate),
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requires a realistic view : a use of the actual infinity of N specifically meant as its
standard interpretation (which cannot be completely axiomatized).

In a kind of paradox, while the completeness theorem is proven by constructing (using
actual infinity) a counter example (model) from the fact of absence of proof, there is no
"inverse construction" which from the fact about infinities that no system can exist with
given properties, would produce any finite witness that is its proof (which must
nevertheless exist).

Instead, analyzing this construction can reveal that the size (complexity) of a proof
roughly reflects the number of well-chosen elements that must be described in an
attempted construction of a counter-example, to discover the necessary failure of such a
construction ; the chosen formalization of proof theory can only affect the size of proofs
in more moderate (describable) proportions.

1.D. Set theory as a unified framework

Structure definers in diverse theories

Let us call structure definer any binder B which faithfully records the unary structure
(relation, resp. function), defined by any input expression (formula, resp. term) A on
some range E (type, class or set here fixed), i.e. its result S = (Bx, A(x)) can restore this
structure by an evaluator V (symbol or expression) : Vg x, (S, x) = A(x).

Admitting the use of negation and the possibility to interpret Booleans by objects (in a
range with at least 2 objects, which is often the case), Russell's paradox shows that
adding both following requirements on a structure definer in a theory would lead to
contradiction :

1. All such S belong to E
2. Vcan occur in the expression A and use x anyhow in its arguments. So Ux, x) is
allowed, which is expected as 1. ensures the definiteness of any (S, S).

Let us list the remaining options. Set theory rejects 1. but keeps 2. But since 1. is
rejected, keeping 2. may be or not be an issue depending on further details.

In the construction (1.5) of a type K of structures defined by a formula A, a binder with
range K abbreviates a successive use of binders on all the parameters of A. Here A and
the interpreting model come first, then the range K of structures with its evaluator V are
created outside them : A has no sub-term with type K, thus does not use V.

The notion of "structure" in 1MT (one-model theory in first-order logic) has this
similarity with the notion of set in set theory : in 1MT, the class of all structures of any
fixed symbol type (beyond constants) is usually not a set, calling "sets" such ranges K (of
those with a fixed defining expression and variable parameters) and their subsets.

This similarity can be formalized by gathering all such K of the same symbol type
(constructed by all possible expressions A) into a single type U, with the same evaluator
V (those A might use Vbut not the range U). This merging of infinitely many ranges into
one, merely re-writes what can be done without it, as long as variables of type U are
only bound on one of these "sets" K (or equivalently, a range covered by finitely many of
them).

In set theory, the ranges of binders are the sets. Thus, beyond its simplifying advantage
of removing types, set theory will get more power by its strengthening axioms which
amount to accept more classes as sets.

Other theories, which we shall ignore in the rest of this work, follow more daring
options:

e Keeping 1. and rejecting 2. will be shown consistent by Skolem's Paradox (4.7) but
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would be quite unnatural.

¢ Even weirder is NF ("New Foundations", so called as it was new when first
published in 1937), combining 1. with a lighter version of 2. restricting the syntax
of A to forbid occurrences of (x€x) or any way to define it.

* The most extreme is lambda calculus, that keeps both points but tolerates the
resulting contradiction by ignoring Boolean logic with its concept of
"contradiction". This "theory" does not describe any object but only its own terms,
seen as computable functions. As a computation system, its contradictions are
computations which keep running never giving any result.

The unified framework of theories

Like arithmetic (and other FOT), to formalize TT or any 1TT as a complete theory,
requires a second-order axiom to exclude non-standard models with pseudo-finite
«expressions» and «proofs». Now, the best environment for such second-order theories
(giving an appearance of unique determination, though not a real one), and also for MT
or 1MT, is the insertion in a strong enough version of set theory (which can define
finiteness: see 4.6). As this insertion turns components into free variables which
together designate the model, their variability removes the main difference between TT
and 1TT, and between MT and 1MT (another difference is that MT can describe
inconsistent theories). This development of model theory from a strong enough version
of set theory will come in parts 3 and 4, completing the grand tour of the foundations of
mathematics after the formalization of set theory (mainly by parts 1 and 2).

Given a theory T'so described, let Ty be the Set theory

external theory, also inserted in set theory, which
looks like a copy of T as any component k of Ty is

the copy of an object serving as a component of T. Ty Model theory
In a suitable formalism, Ty can be defined from T as
made of the k such that Universek "k'eT, i.e. the k< "<!=(»

|

value of the quoting term " k" interpreted in the \
universe belongs to T.

But there is no general inverse definition, of T from
a Tp with infinitely many components, as an object
cannot be defined from a given infinity of meta-
objects. Any infinite list of components of T needs
to fit some definition, to get the idealized image T
of Ty by interpreting that definition in the universe.
(The defining formula must be bounded for Ty to
match the above definition from this 7).

This forms a convenient framework for describing
theories and their models, unifying both previously Universe
mentioned set-theoretical and model-theoretical

frameworks : all works of the theory T (expressions, proofs and other developments),
have copies as objects (by interpreting their quotes) formally described by the model
theoretical development of set theory as works of the theory T. In the same universe,
any system M described as a model of T'is indirectly also a (set-theoretical) model of Ty.

But as a first-order theory, set theory cannot exclude non-standard universes, whose
interpretation of FOTs is non-standard (with pseudo-finite objects). There, the following
discrepancies between Tp and T may occur :

e Any T with an infinity of components also has non-standard ones; but Ty only
copies its standard components. Then a model of Ty may fail to be a model of T by

not fitting some non-standard axioms of T.
e T'may be inconsistent while Tj is consistent, due to a non-standard contradiction
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(may it use non-standard axioms or only standard ones). Such a T has no model in
this universe, letting models of Ty either only exist outside it, or also in it with the

above described failure to be a model of T.

So understood, the validity conditions of this unified framework are usually accepted as
legitimate assumptions, by focusing on well-described theories, interpreted in standard
universes whose existence is admitted on philosophical grounds.

Set theory as its own unified framework Set theory
Applying this unified framework to the choice of a set Model theory
theory in the role of Ty (describing M and idealized as

an object T), expands the tools of interpretation of set k —k
theory into itself (1.7). As Ty co-exists at the same level i

with the set theory serving as framework, they can be
taken as exact copies of each other (with no
standardness issue), which amounts to taking the same
set theory with two interpretations : M called
"universe", and the framework interpretation called
"meta-universe".

But the second incompleteness theorem makes them
differ as follows. The statement of existence of a
universe of any given set theory T (and thus also the
stronger statement of existence of a standard one),
expressed as a set theoretical statement interpreted in
the meta-universe, cannot be a theorem of T. This
shows the necessary diversity of strengths between useful axiomatic set theories, which
will be further commented in 2.C.

Meta-
universe

Zeno's Paradox

Achilles runs after a turtle; whenever he crosses the distance to it, the turtle takes a
new length ahead.

Seen from a height, a vehicle gone on a horizontal road approaches the horizon.
Particles are sent in accelerators closer and closer to the speed of light.

Can they reach their ends ?

Each example can be seen in two ways:

e the «closed» view, sees a reachable end;
o the «open» view ignores this end, but only sees the movement towards it, never
reaching it.

In each example, a physical measure of the «cost» to approach and eventually reach the
targeted end, decides which view is «true», according to whether this cost would be
finite or infinite (which may differ from the first guess of a naive observer). But the
realm of mathematics, free from all physical costs and where objects only play roles, can
accept both views.

As each generic theory can use binders over types, it sees types as wholes (sets) and
«reaches the end» of its model seen as «closed». But any framework encompassing it
(one-model theory or set theory) escapes this whole. Now set theory has multiple
models, from a universe to a meta-universe (containing more sets : meta-sets, and new
functions between them) and so on (a meta-meta-universe...). To reflect the endless
possibilities of escaping any given universe, requires an «open» theory integrating each
universe as a part (past) of a later universe, forming an endless sequence of growing
realities, with no view of any definite totality. The role of this open theory is played by
set theory itself, with the way its expressions only bind variables on sets.
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