
   

 

 

 
LOGIC AROUND THE WORLD 
On the Occasion of 5th Annual Conference of the Iranian Association for Logic  

 

 

 

 

 

 

 

 

 

 

 

 

Edited by: 

 

Massoud Pourmahdian 

Ali Sadegh Daghighi 

 

 

 

 

 

 

 

 

 

Department of Mathematics & Computer Science 

Amirkabir University of Technology 



 



   

In memory of Avicenna, the great 

Iranian medieval polymath who 

made a major contribution to logic.   



 

 

 

LOGIC AROUND THE WORLD 
On the Occasion of 5th Annual Conference of the Iranian Association for Logic  

Massoud Pourmahdian, Ali Sadegh Daghighi Editors: 

Ali Sadegh Daghighi Cover Design: 

Seyyed Ahmad Mirsanei Page Layout: 

500  Circulation: 

6 $  Price: 

978-600-6386-99-7 ISBN: 

 تهران(:  ۰۹۳۱.= م۷۱۰۲:  پنجمین) ایران منطق انجمن ی سالانه کنفرانس سرشناسه:
Annual Conference of the Iranian Association for Logic (5th : 2017 : Tehran)  

 Logic around the World   : On the Occasion of 5th Annual Conference of the Iranian عنوان و نام پدیدآور:

Association for Logic    / edited by Massoud Pourmahdian, Ali Sadegh Daghighi.                                          

                     ‬.م۷۱۶۲=   ‬۶۹۳۱ ،  جاویدان فرهنگ و اندیشه:  قم مشخصات نشر:

           ‬.ص ۷۵۱   مشخصات ظاهری:

 7-99-6386-600-978 شابک:

 فیپا وضعیت فهرست نویسی:

 .انگلیسی یادداشت:

 ها کنگره --ریاضی منطق موضوع:

 Logic, Symbolic and Mathematical – Congresses موضوع:

           ویراستار ،‬ - ۶۹۳۱   مسعود، پورمهدیان، افزوده: شناسه

 Pourmahdian, Massoud افزوده: شناسه

           ویراستار ،‬ - ۶۹۱۵   علی، صادق دقیقی،  افزوده: شناسه

  Sadegh Daghighi, Ali افزوده: شناسه

 BC ۶۹۵ ک/۳ ۶۹۳۱ کنگره: بندی رده

           ۵۶۶/۹  دیویی: بندی رده

 ‬۳۳۴۶۳۷۳ ملی: کتابشناسی شماره

 

© 2017 A.F.J. Publishing 

 

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, 

specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm 

or in any other way, and storage in data banks. 

 

Printed in Iran. 

 

Address: 
Unit 1. No.356, Ayat-allah Kashani Street, Tehran, Iran. Postal Code: 1481855486. TeleFax: +9821 44038066. 

Unit 2. No.94, Alley 59,  Imam Street, Qom, Iran. Postal Code: 3718665835. TeleFax: +9825 36500401-3. 

Website: http://eafj.ir/  

E-mail: info@eafj.ir 
  



   

 
 

CONTENTS 
 

PREFACE 7 

CONTRIBUTORS 9 

PART 1 

TOPICS IN LOGIC AND  PHILOSOPHY OF MATHEMATICS 11 

THE ROLE OF DEFINABILITY IN TREE PROPERTY 13 

Ali Sadegh Daghighi 

SKOLEM SATISFIED: ON   AND   31 

Frode Alfson Bjørdal 

SET THEORETIC PLURALISM 43 

Toby Meadows 

THE DEVELOPMENT OF  AORISTIC MODAL LOGIC 57 

Christopher Gifford 

AN INTRODUCTION TO RAMSEY ALGEBRAS 67 

Zu Yao Teoh 

ADDITIONAL SET THEORETIC ASSUMPTIONS AND TWISTED SUMS OF BANACH SPACES 75 

Claudia Correa 

ŁUKASIEWICZ, JASKOWSKI AND NATURAL DEDUCTION: CURRY-HOWARD FOR CL 89 

Adrian Rezus 

PART 2 

ON THE LIFE AND  WORK OF LOGICIANS 139 

IN MEMORY OF RAYMOND SMULLYAN 141 

Melvin Fitting 

ANDRAS HAJNAL, LIFE AND WORK 147 

Mirna Džamonja 

MY MEMORIES OF PROFESSOR JACK SILVER 153 

Aleksandar Ignjatovic 

A LOGICIAN’S AUTOBIOGRAPHY 157 

John Corcoran 



PART 3 

LOGIC COMMUNITIES  AROUND THE WORLD 165 

LOGIC IN BOGOTA: SOME NOTES 167 

Andres Villaveces 

THE LOGIC GROUP AT NATIONAL UNIVERSITY OF SINGAPORE: A PERSONAL VIEW  177 

Yang Yue 

WOMEN IN LOGIC: WHAT, HOW & WHY 183 

Valeria De Paiva 

PART 4 

ON INTERDISCIPLINARY APPLICATIONS OF LOGIC 187 

SEMANTICS IN LOGIC AND COGNITION 189 

Vadim Kulikov 

LOGICAL METHODS FOR THE VERIFICATION OF SOFTWARE MODELS 203 

Magdalena Widl 

SET THEORY FOR POETS,  POETRY FOR SET THEORISTS 207 

William Flesch 

PART 5 

ON LOGIC BOOKS AND WEBSITES 213 

CLARIFYING THE FOUNDATIONS: AN INTRODUCTION TO THE SITE SETTHEORY.NET 215 

Sylvain Poirier 

INDIAN LOGIC IN “THE COLLECTED WRITINGS OF JAYSANKAR LAL SHAW” 233 

Jaysankar Lal Shaw 

A NOTE ON “THERE ARE TWO ERRORS  IN THE TITLE OF THIS BOOK” 243 

Robert Martin 

BRAIN’S ALGORITHM: ON VON NEUMANN’S “THE COMPUTER AND THE BRAIN” 247 

Keyvan Yahya 

 

 



 

 
 

PREFACE 

 
The present volume has been provided by the Amirkabir Logic Group 
on the occasion of 5th Annual Conference of the Iranian Association 
for Logic (IAL), a unique national event with occasional international 
contributors which brings many Iranian mathematical and 
philosophical logicians together. In December 2017, this event took 
place at the Amirkabir University of Technology, which hosts 
Amirkabir Logic Group. Currently, the group consists of several 
faculty members, postdoctoral researchers and graduate students who 
conduct research in different branches of mathematical logic, 
including model theory, recursion theory, set theory and modal logic.   
 

The following collection includes several articles in various 
disciplines of logic and its applications. It is intended to give an 
introductory view of some particular topics in mathematical and 
philosophical logic to the general audience in the Iranian logic society 
in the hope of preparing the ground for possible collaborations 
between Iranian researchers and their colleagues in other countries 
along these lines. Also, as a source of inspiration for the researchers 
and managers of the Iranian logic community, the development 
history of some successful logic schools around the world, as well as 
some biographies of internationally renowned logicians, have been 
added into the contents. Furthermore, the collection contains some 
brief reviews of logic websites and books of interdisciplinary nature in 
favor of motivating the readers to follow the related content in future.  

  
Many people have contributed either directly or indirectly to this 

collection. First and foremost, the editors thank all logician and 
philosopher fellows of various nationalities who kindly accepted our 
invitation for contributing to the present book. We would also like to 
thank William Flesch for the re-publication permission of his 
submitted article and Heike Mildenberger for her supportive note 
which has been sent to the editors after her visit of the Institute for 
Research in Fundamental Sciences (IPM) in April 2017. We also 
express a special gratitude to Robert Solovay, Tomek Bartoszynski, 
John Corcoran, Parisa Jahangiri, Anand Jayprakash Vaidya and 
Keyvan Yahya who assisted the editors during communications with 
some of our collaborators at the University of California, Berkeley, 
the University of New South Wales, City University of New York, 



 

Dalhousie University, Victoria University of Wellington and 
University of Bristol respectively. Further thanks to Sylvain Poirier 
for advertising the Iranian logic groups as well as the present book on 
his comprehensive logic portal, settheory.net. Also, we thank 
Jaysankar Lal Shaw, who kindly invited the second editor (as the 
representative of the Amirkabir Logic Group) to send a message about 
the present volume addressing the members of the Society for 
Philosophy and Culture in New Zealand.  

 
Additionally, we would like to extend our appreciation to Vadim 

Kulikov for his effort to provide an article for us based on an already 
organized interview with Hugh Woodin. Unfortunately, the interview 
got canceled due to Prof. Woodin’s busy schedule. In the same way, 
we appreciate Samuel Gomez da Silva’s help with organizing a team 
of Brazilian logicians to provide a paper on the history of Brazilian 
logic for the present collection. However, this project also got 
canceled due to some co-authors’ lack of time. We also thank Sergei 
Akbarov and Merve Secgin for their effort in the direction of 
preparing some articles (with the help of their colleagues) on the 
history of the Russian school of mathematical logic and the logic 
activities at Nesin’s Mathematics Village in Turkey respectively. 
Although, both projects failed to get prepared in time due to various 
reasons. While the editors regret this, we are consoled that these 
topics, at least, will be documented elsewhere in the future.  

  
Last but not least, we would like to thank Mohammad Golshani 

for reviewing some of the papers in this collection, Mina 
Mohammadian for helpful communications with the officials at the 
Iranian Association for Logic concerning this project, and Atefeh 
Rohani for reformatting part of the text which enabled us to prepare 
the earlier draft for publication more quickly. Also, we are grateful to 
Seyyed Ahmad Mirsanei, the manager of Andisheh & Farhang-e 
Javidan Publishing, for his close collaboration during the publication 
process. 
  

The Editors 

Massoud Pourmahdian 

Ali Sadegh Daghighi 
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PART 1 
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THE ROLE OF DEFINABILITY 
IN TREE PROPERTY  

 
Ali Sadegh Daghighi 

 
1. Introduction  

 

The present article is a survey of four related works by Leshem [Le], 

Daghighi and Pourmahdian [DP], Golshani [Go] and Enayat and 

Hamkins [EH]. It is intended to tackle a specific aspect of the famous 

tree property project in set theory, namely the role of definability in 

the long standing open question concerning the consistency of holding 

tree property at various collections of regular cardinals.  

  

In section 2, we briefly review the literature surrounding the 

classical tree property problem. Then, in section 3, we explain the new 

definability approach suggested by Leshem which is actually the basis 

for further investigations along these lines by the others.  

 

In sections 4, a generalization of Leshem’s result by Daghighi and 

Pourmahdian concerning the case of successor of regular cardinals is 

explained. In section 5, we discuss Daghighi and Pourmahdian’s proof 

of the case of successor of a singular cardinal and then explain a 

solution to the general definable tree property conjecture by Golshani.  

 

In section 6, we point out to the work of Enayat and Hamkins who 

proved the failure of a different version of definable tree property for 

   -trees which itself provides an answer to a question of the author 

on Mathoverflow [Da] about the limit of potential large cardinal 

strength of the proper class of all ordinals,    .  

 

Finally, a conclusion is added in section 7 comparing the case of 

definable tree property with the definable version of some other open 

problems in set theory such as the role of the axiom of choice in the 

Kunen inconsistency theorem.    
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2. The classical tree property problem 

 

Tree is a fundamental mathematical concept with numerous 

applications in various branches of mathematics, science and 

technology. Most trees that appear in daily mathematics and computer 

science have a finite number of vertices. These form the set 

theoretically small trees. The theory of small trees is extensively 

investigated by graph theorists and other mathematicians of various 

disciplines. But the theory of large trees (i.e. those of size    ) 

turned out to be quite different. It needs essentially different 

mathematical tools to deal with such large trees. Such tools are mainly 

developed in set theory and are powerful enough to provide many 

unexpected discoveries including independence results. 

 

First, let us add a brief historical background of the main tree 

property problem. It goes back to 1927 when Konig [Ko] proved the 

following theorem about infinite locally finite connected graphs.  

 

Theorem 2.1. (Konig’s Infinity Lemma) Every infinite, locally finite 

(i.e. each vertex has a finite degree) connected undirected graph 

includes an infinite simple path.  

 

Later in 1955, Beth [Be] independently proved a seemingly 

weaker but in fact equivalent form of the above theorem.  

 

Theorem 2.2. (Beth’s Tree Theorem) Every infinite, locally finite 

(undirected) tree with a root has an infinite simple path. 

 

The property of locally finite infinite trees in Konig’s infinity 

lemma and Beth’s tree theorem became isolated as what is called tree 

property in set theoretic literature. Tree property is the property of an 

infinite regular cardinal  . Roughly speaking it states that the same 

phenomenon that happens for locally finite trees of size    should 

hold for locally small (with respect to  ) trees of size   (aka   – trees).  

 

Here are the definitions for the sake of completeness:  
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Definition 2.3. Assume   is a regular cardinal.  

 

(1) A tree is a partially ordered set        such that for any     the 

set {    |        of   - predecessors of   is well-ordered under    

and there is a root     such that for any          .  
 

(2) For an ordinal   the   th level of   denoted by   , is the set of 

elements of   whose set of   – predecessors has order type  .   

 

(3) Height of   is defined as           {  |      . 
 

(4) A   - tree is a locally small large tree with respect to cardinal  , 

namely a tree        whose underlying set is   with         and 

          |  |   . 

 

(5) A branch   is a    - linearly ordered subset of   which is 

downward closed. i.e.         (             )  A cofinal 

branch is a branch which meets every non-empty level of  . 

 

(6) A   – Aronszajn tree is a   – tree with no cofinal branch.   

(7) We say   has the tree property (denoted by      ) if there is no 

  – Aronszajn tree, equivalently if every   – tree has a cofinal branch.  

 

The question which immediately arises is whether every regular 

cardinal has tree property? Soon afterwards it turned out to be a false 

assumption. Using the Axiom of Choice, Aronszajn [Je] managed to 

construct an   -tree with a cofinal branch (also known as an    – 

Aronszajn tree) proving that    doesn’t have the tree property. This 

phenomenon contradicts the case of tree property on    which follows 

by Konig’s infinity lemma.  

 

Theorem 2.4. (Konig)    has the tree property. 

 

Theorem 2.5. (Aronszaijn)    does NOT have the tree property. 
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Question 2.6. What about   ?  Does it have tree property? 

 

First one should note that due to the following results of Specker 

[Sp] and Baumgartner [Ba], the situation of tree property on    may 

vary depending on the combinatorial properties of the universe.  

 

Theorem 2.7. (Specker) For every regular cardinal   with the property 

     , there is a    - Aronszajn tree. Thus           . 
 

Theorem 2.8. (Baumgartner) If Proper Forcing Axiom holds then 

there is NO    - Aronszajn tree (i.e.             ). 
 

However, Silver and Mitchell’s [Mi] significant result (which has 

been obtained through separated forcing and inner model techniques) 

surprisingly revealed a deep relationship between tree property and 

large cardinal axioms.  

 

Theorem 2.9. (Mitchell - Silver) The followings are equiconsistent: 

 

(1)    has the tree property. 

 

(2) A weakly compact cardinal exists. 

 

Soon after Mitchell and Silver’s result, the investigation into the 

problem of having tree property on other uncountable regular 

cardinals brought up much more complexity. For example, Abraham 

and Magidor [Ab] observed that the consistency strength of having 

tree property on multiple regular cardinals simultaneously could be 

greater than the combined large cardinal strength of their separated 

cases.  

 

Theorem 2.10. (Abraham) Assuming the consistency of a 

supercompact cardinal and a weakly compact above it, it is consistent 

that both    and    have tree property.  
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Theorem 2.11. (Magidor)  The consistency of having tree property on 

both    and    implies the consistency of the large cardinal axiom 

“   exists”.  

 

Corollary 2.12. The large cardinal strength of               is 

bounded between “   exists” (that is stronger than the existence of 

two weakly compacts) and the existence of a supercompact cardinal 

and a weakly compact above it.  

 

Continuing this way, Cummings and Foremann [CF] obtained the 

following result: 

 

Theorem 2.13. (Cummings - Foremann) Assuming the consistency of 

the existence of  -many supercompact cardinals, it is consistent to 

have tree property on all   s for       simultaneously.  

  

Also it turned out that getting tree property on certain regular 

cardinals such as (double) successor of singular cardinals is generally 

much harder than the other cases and needs a more sophisticated 

analysis while keeping an eye on the potential PCF-related issues 

about singular cardinals. For example, see the following result of 

Magidor and Shelah [MS]. 

 

Theorem 2.14. (Magidor - Shelah) If   is the singular limit of    - 

supercompact cardinals then    has the tree property. Consequently 

assuming a “very strong large cardinal axiom”, it is consistent to have 

tree property on     .  

 

Magidor and Shelah's result is actually the first example of 

obtaining tree property at the successor of a singular cardinal. Later, 

Sinapova [Si3] reduced the very strong large cardinal assumption in 

the above theorem to the existence of  –many supercompact 

cardinals. Later Neeman [Ne] managed to combine Magidor and 

Shelah’s result with Cummings and Foremann’s theorem in order to 

obtain a uniform consistency result as follows: 
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Theorem 2.15. (Neeman) Starting from   – many supercompact 

cardinals it is consistent to have tree property at all successor cardinals 

in the interval          . 
 

Another type of important results in this direction is those like the 

below theorem of Friedman and Halilovic [FH] which deals with 

double successor of singular cardinals rather than single successors. It 

is actually an extended version of a similar result of Cummings and 

Foremann [CF].  

 

Theorem 2.16. (Friedman - Halilovic) Assuming a weak compact 

hypermeasurable cardinal, one can get the consistency of having tree 

property at      with    strong limit. 

 

More along these lines is the following result of Golshani and 

Hayut [GH] which provides a large cardinal strength upper bound for 

the consistency of tree property at a countably infinite segment of 

singular cardinals.  

 

Theorem 2.17. (Golshani - Hayut) Assuming the existence of   -

many supercompact cardinals where   is a supercompact cardinal 

itself, for every countable ordinal  , it is consistent with ZFC+GCH to 

have tree property on all successors of singular cardinals of the form 

       for      . 

  

Inspired by the technique that has been used in the proof of the 

above theorem, Hayut [Ha] proved a more general result as follows. 

However, the corresponding paper is still under review.    

 

Theorem 2.18. (Hayut) Starting from a stationary set of supercompact 

cardinals, one can find a generic extension in which the tree property 

holds at every regular cardinal between    and     . 

 

Recall that in spite of all these theorems, it is NOT consistent that 

all regular cardinals satisfy tree property (e.g.   ) but the above results 

suggest that the tree property could be forced in all other cases if 

strong enough large cardinal axioms are assumed. This observation 
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led Magidor to the famous tree property conjecture which is still open 

and technically out of reach. 

 

Conjecture 2.19. (Tree Property Conjecture) Starting from 

appropriate large cardinal axioms, it is consistent to have tree property 

on all regular cardinals except   . 

 

So much effort has been put into solving this main problem in set 

theory so far. Many advanced forcing techniques have been developed 

in order to provide partial solutions for this general conjecture.  

 

The inhomogeneity of the existing techniques for different cases 

also suggests that a complete solution for the main problem might be 

of high complexity if not impossible.  

 

Generally, Mitchell’s forcing works for the double successor of 

regular cardinals. For double successor of singular strong limit 

cardinals, a combination of Mitchell’s argument and Prikry or 

Magidor forcings may work depending on the required countable or 

uncountable cofinality of the singular cardinals in the ultimate model.   

 

For successor of singulars, there are three different arguments by 

Magidor and Shelah [MS], Sinapova [Si3] (using Prikry-type 

forcings) and Neeman [Ne] (via iterated Levy collapses). 

 

In the case of successor of singulars (with possible failures of     

which is based on an important question of Woodin [Fo]), successive 

cardinals, even cardinals and odd cardinals, a combination of the 

above techniques and recent tools such as Gitik – Sharon’s diagonal 

supercompact Prikry forcing [GS] and Sinapova’s diagonal 

supercompact Magidor forcing [Si1, Si2] (for uncountable 

cofinalities) works.  

 

In the upcoming sections, we are going to investigate a new 

approach towards tree property conjecture which reveals the role of 

definability in this problem while demonstrating how a definable 
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version of this long standing open question could be solved with less 

strong large cardinal assumptions.   
  

3. Definable version of tree property: the case of      

 

In 2000, Amir Leshem [Le] realized that the use of the Axiom of 

Choice in Aronszajn’s original construction of an    – Aronszajn tree 

(i.e. an    – tree with no uncountable branch) is essential and this fact 

makes such a tree undefinable.  

 

Then he brought up the idea of making a distinction between 

definable and undefinable   – Aronszajn trees and considering 

definable tree property, a weak version of the usual tree property, as 

follows: 

 

Definition 3.1. (Definable tree property) Let   be a regular cardinal, 

 

(1)           is a definable   – tree if it is a   – tree and there 

exists a natural number   such that the order relation    is definable 

in the structure        using some    - formula with parameters from 

  .   

 

(2) We say that   has the definable tree property, denoted by       , 
if every definable   – tree has a cofinal branch. Equivalently, if there 

is no definable   – Aronszajn tree.   

 

Remark 3.2. If   satisfies usual tree property, then it has definable 

tree property as well.  

 

Moreover, Leshem proved that assuming the existence of a   
 – 

reflecting cardinal  , which is a very weak large cardinal axiom and a 

definable analogue of   
  - indescribable cardinals (aka weakly 

compact cardinals) one can prove the consistency of definable tree 

property on    through a Levy collapse of   into   . Also he showed 

that         implies that    is a   
 – reflecting cardinal in   and so 

these two statements are equiconsistent. 
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Definition 3.3. (  
 – indescribable cardinal) An inaccessible cardinal 

  is   
 -indescribable,  if and only if  for every      and for every 

  
 -sentence  , if            then there is an     such that 

             . 

 

Definition 3.4. (  
 – reflecting cardinal) Let   be a cardinal. We say 

that   is a   
  – reflecting cardinal, if   is inaccessible and for every 

       definable over    (with parameters) and for every   
  - 

sentence  , such that          |    there is an      such that 

              |    .  

 

The following folklore theorem of Hanf and Scott provides a 

bridge between indescribable large cardinals and tree property. It is a 

source of inspiration for similar results on definable tree property and 

reflecting cardinals. 

 

Theorem 3.5. (Hanf-Scott) The following statements are equivalent: 

 

(1)   is weakly compact.  

 

(2)   is   
  - indescribable. 

 

(3)   is inaccessible and has tree property. 

   

Next is the main result of this section: 

 

Theorem 3.6. (Leshem) The following statements are equiconsistent: 

 

(1)    has the definable tree property.  

 

(2) There exists a   
  - reflecting cardinal.  

 

Leshem’s result indicates that even those regular cardinals like    

that don’t satisfy tree property might have definable tree property. So, 

one can be hopeful to obtain definable tree property at all regular 
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cardinals. In this direction, a definable version of the main tree 

property conjecture has been proposed in [DP]. 

 

Conjecture 3.7. (Definable tree property conjecture) Starting from 

appropriate large cardinal axioms, it is consistent to have definable 

tree property on all regular cardinals. 

 

In the next sections we show how this conjecture could be solved 

affirmatively in several partial steps.         

 

4. Definable tree property conjecture: the regular case 

 

The first step in the direction of generalizing Leshem’s result has 

appeared in Daghighi and Pourmahdian’s work [DP] where the 

following generalization of Leshem’s result is proved.  

 

Theorem 4.1. (Daghighi - Pourmahdian) The following statements 

are equiconsistent: 

 

(1) For every regular cardinal       has definable tree property.  

 

(2) There are proper class-many   
  - reflecting cardinals.  

 

The theorem pinpoints the consistency strength of definable tree 

property conjecture for successors of regular cardinals. It significantly 

reduces the expected large cardinal strength of the analogue of this 

theorem for the usual tree property. 

 

As a sketch of the proof, note that (1) to (2) part could be obtained 

through an inner model argument in   where the fact that the 

successor of each regular cardinal has tree property in   indicates that 

this cardinal is   
  – reflecting in   which itself implies that the 

number of   
  - reflecting cardinals should be unbounded in  .  

 

The (2) to (1) part is also provable through iterated forcing with 

Easton support of Levy collapses of   
  - reflecting cardinals in proper 

class length. The point that makes this forcing work is the preservation 
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of homogeneity of Levy collapse forcing by Easton reverse iterations 

which allows us to bring down definable objects derived from our 

definable trees into lower levels of our iteration.  

The homogeneity-definability idea in the proof of the above main 

theorem is actually a recurring theme in most forcing arguments of 

this type which deal with definable tree property, particularly those 

which appear in the next section.  

 

Next part deals with the case of definable tree property at the 

successor of singular cardinals which opens the road to a complete 

solution for the consistency of the definable tree property conjecture. 

 

5. Definable tree property conjecture: the singular case  

The natural step after proving the consistency of definable tree 

property for the successor of all regular cardinals is to deal with the 

case of the successor of singular cardinals. Due to the interconnected 

nature of singular cardinals (revealed by Silver’s singular cardinal 

theorem and PCF-theory), this case is usually more sophisticated in 

comparison with the case of regular cardinals and needs more 

advanced techniques.  

 

The first result in this direction that is worth mentioning is the 

definable analogy of Magidor - Shelah’s theorem about     .   

 

Theorem 5.1. (Daghighi - Pourmahdian) Assume     holds in   

and there is a supercompact cardinal   with supercompactness 

elementary embedding  . Let   be a measurable cardinal above it. 

Then there is a generic extension of the   like      in which:  

 

(1)   is a strongly limit singular cardinal of cofinality  . 

 

(2)      and the definable tree property holds at  . 

 

(3) No bounded subsets of   are added. So     holds below  . 

  

(4)    |    |, in particular if |    |    , then     fails at  .   
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The last two parts of the theorem about holding     below   and 

failing     at   together with having definable tree property at   , 

provides an affirmative answer to a definable version of an old open 

question of Woodin and Neeman who after producing a model for 

failure of     at a singular cardinal   and tree property at   observed 

that     fails cofinally often below  , and then asked whether it is 

possible to have     below   in a similar model or not.  

 

The theorem reduces the large cardinal assumption which is 

needed for proving the consistency of the definable tree property at 

successor of a singular cardinal. According to Shelah and Magidor’s 

proof and Sinapova’s modification of their theorem, definable tree 

property at the successor of a singular cardinal could be obtained from 

a large cardinal assumption as strong as the existence of   – many 

supercompact cardinals.  

 

The proof is based on the supercompact extender based Prikry 

forcing introduced by Merimovich [Me] in 2011. Continuing along 

these lines and using a generalized version of supercompact extender 

based Prikry forcing, namely supercompact extender based Radin 

forcing, Golshani [Go] proved the following result:    

 

Theorem 5.2. (Golshani)  Assume   is a supercompact cardinal and 

    is measurable. Then there is a generic extension   of the 

universe in which the following hold: 

 

(a)   remains inaccessible. 

 

(b) Definable tree property holds at all uncountable regular cardinals 

less than  . In particular the rank initial segment    of   is a model 

of     in which definable tree property holds at all uncountable 

regular cardinals. 

 

Remark 5.3. In the above theorem the large cardinal strength of   

could be reduced to a   
 -reflecting cardinal. 
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The corresponding paper is still under review and unpublished yet. If 

correct, it provides an affirmative answer to the definable tree property 

conjecture stated in the section 3. 
 

6. Definable tree property for class trees 

 

On one hand, the ordinal numbers are generalization of natural 

numbers. In this sense the proper class of all ordinals,    , is very 

similar to the infinite set of all natural numbers  . On the other hand, 

many large cardinal axioms are actually generalizations of the 

properties of   in uncountable realm. Thus   could be considered a 

large cardinal in many ways. For instance,   is a strongly compact 

cardinal because      is a compact logic. This fact shows that the 

nature of   is very adequate for fulfilling large cardinal properties.  

 

Inspired by these facts the author brought up the following natural 

question on Mathoverflow in 2013 [Da]. It simply asks whether     

shows a similar adequacy for accepting large cardinal properties just 

like its set-sized counterpart,  , or not.   

 

Question 6.1. How strong can the large cardinal properties of     be? 

Is there any large cardinal property that     provably fails to satisfy?   

 

In order to approach this question, one first should note that     

provably behaves like small large cardinals. For instance, using power 

set axiom and the axiom of choice it could be shown that     is 

closed under exponentiation and so is strongly limit. Due to the 

replacement axiom     also satisfies a definable analogue of 

regularity and so in this sense is definably strongly inaccessible in 

ZFC. 

 

In 2016, Enayat and Hamkins [EH] investigated the large cardinal 

properties of     more extensively. They came across a rather strange 

behavior of     in connection with tree property and weakly 

compactness.  
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Their research led to the discovery of an upper limit on the large 

cardinal strength of     by establishing the fact that within    , the 

proper class of all ordinals never satisfies a certain variant of the 

definable tree property (different from Leshem’s version) and so never 

can behave like a weakly compact cardinal. The result provided a 

surprising affirmative answer to the above question which contradicts 

our intuition about the similarity between proper class     and the 

infinite set  . The corresponding definition and main theorem are as 

follows: 

 

Definition 6.2. Suppose  |      . 

 

(a) Suppose             is a tree ordering, where both T and    are 

  - definable.   is an    -tree in   iff   satisfies “  is a well-

founded tree of height     and for all        , the collection    of 

elements of   at level   of   form a set”. Such a tree   is said to be a 

definably    -Aronszajn tree in   iff no cofinal branch of   is   -

definable. 

 

(b) The definable tree property for     fails in   iff there exists a 

definably    -Aronszajn tree in  .  

 

Theorem 6.3. (Enayat – Hamkins) Let   be any model of    . 

 

(1) The definable tree property fails in  : There is an  -definable 

   -tree with no  -definable cofinal branch.  

 

(2) The definable partition property fails in  : There is an  -

definable  -coloring             for some   -definable proper 

class   such that no   -definable proper class is monochromatic for 

 . 

 

(3) The definable compactness property for      fails in  : There is 

a definable theory   in the logic       (in the sense of  ) of size     
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such that every set-sized sub-theory of   is satisfiable in  , but there 

is no   -definable model of  .   
The proof of the last theorem uses model theoretic constructions 

based on some tools that Enayat has already developed in a few 

papers. Particularly, the proof of a special case of this theorem has 

appeared in [En].  

 

7. The conclusion 

 

In nutshell, the results demonstrated in this survey indicate how 

drastically the nature of the tree property problem changes when one 

considers its definable version. This is indeed not a new phenomenon 

in set theory. The same happens about some other open problems of 

set theory such as the question regarding the essential use of the axiom 

of choice in the Kunen inconsistency theorem, the statement that there 

is no non-trivial self-elementary embedding of the universe.  

 

It is an important long standing open question in large cardinal 

theory to understand whether Kunen’s result still holds if one removes 

AC from the foundations. In fact by a result of Suzuki [Su] it turned 

out that the definable version of this problem has a simple solution.  

 

Theorem 7.1. (Suzuki) Within ZF it is provable that there is no non-

trivial self-elementary embedding of the universe which is definable 

from parameters. So the definable version of the Kunen inconsistency 

theorem doesn’t make an essential use of the axiom of choice.  

 

Thus, it is always interesting to consider the definable case of a 

complicated problem because definability in essence provides a simple 

description of the involved objects which itself provides some 

possible shortcuts to an eye-opening partial solution. Such partial 

solutions may shed some light on the main problem by giving an idea 

of the way things work in a simpler case. They also give a better view 

of the complexity of the general case with all undefinable objects 

involved. 
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Frode Alfson Bjørdal 

 
I have been kindly asked to explain some of the central features and 

motivations of my work in the foundations of mathematics. I will first 

relate the alternative librationist set theory and theory of truth   

(“libra”) which I have come to work out over many years, and I also 

relate some on the much weaker volutionary foundational approach   

(“rouble”) which I recently discovered and which is also geared to 

reinterpret arithmetical incompleteability and more generally 

unsolvability as genuinely paradoxical phenomena. 

 

Let me apologize somewhat for perhaps making too many references 

to my own work. This is in part due to accidental time pressure, but it 

also ended up as a determined choice to give many references to 

myself on account of considerations that the purpose is not to guide 

the reader to classical contributions though rather to convey the 

upshots or gists of the work of the author. I even include more of my 

works in the bibliographical section than explicitly referred to in the 

main text as titles of the works are most usually informative, and some 

also give hyperlinks which may be useful to some.  

 

I parenthetically remark that I started using the pound 

sign   only in 2014, so this is not found in earlier texts. My 

exploration of what I now call volutionism, or also volutionary 

arithmetic, started at the end of 2015 and I have come to use the 

Russian Ruble sign   as a name of the volutionary stance on 

foundational issues. Moreover, if   is the particular arithmetical 

theory being voluted then   (pronounced “eet”) is the name of the 

volutionary image of  .  

 

A primary motivation for my approach to foundational 

matters has been the conviction that the standard resolutions of the 

semantical and set theoretical paradoxes are highly unsatisfactory, and 

I have always wanted that the Liar's paradox and set theoretical 
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paradoxes à la that of Russell should be treated in a unified way; 

Bjørdal (2014A) explains best how we can resolve the Liar's 

paradoxes within the librationist set theory £ and so obtain a unified 

treatment of the set theoretic and semantical paradoxical quandaries.  

  

Another main desideratum that always was a driving 

force for me since I began struggling with these matters is that 

classical logic must be accepted and that it is not to be contradicted 

even in the presence of the comprehension we want: Let formula   be 

an antithesis of a system   if its negation    is a thesis of  . 

Consider theory    an extension of theory   if all theses of   are 

theses of    , and consider     a sedation of   if no thesis of     is an 

antithesis of  .     is considered a sedate extension of   if     is a 

sedation of   and    is an extension of  .   is a sedate extension of 

classical logic, as are the much weaker volutionary approaches guided 

by the volutionary philosophy  . 

 

It has therefore throughout these developments always 

been important to me to distinguish the librationist approach   – or 

precedent approaches – and now also the volutionary philosophy   

and volutionist systems from the variety of paraconsistent approaches 

that have been proposed to resolve paradoxes in recent literature.  

 

Moreover, a central motive for the librationist 

philosophy is that all conditions on sets give rise to a well-defined set, 

and so full self-referentiality is allowed. It is very much on account of 

this self-referentiality that mathematical strength and usefulness is 

achieved by  . 

 

A further advantage with the librationist philosophy - 

which should not be underestimated - is that it allows us to talk about 

everything, and so £ has universal sets.  

 

It is largely for such reasons as invoked in the preceding 

paragraphs connected with the desire to get out from the implausibly 

never ending cumulative hierarchy or kindred caves that the author 

invoked the word “closures” in the title of Bjørdal (2012). 
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When we note that a set s is paradoxical in  , this 

means that for some set   both     and     are theses of  . As an 

example, if   is Russell's set   |     then both     and     are 

theses of  . Similarly, a sentence   is paradoxical in   if both   and 

   are theses of  . A sentence   is a maxim of   if   is a thesis of   

and also an antithesis of  . 

 

  does not have the adjunction (“conjunction” in the 

majority of idiolects)      as a thesis for any formula  . Thence 

the inferential principles of   are novel, and the reader is sent to 

Bjørdal (2012) to study these; here we just remark that modus ponens 

is not a generally valid inference principle for  . 

 

I adapt some from page 18 onwards of the current 8
th

 

version of Bjørdal (2014A) in order to convey some on how I have 

attempted to think about these odd and confusing things just noted as 

concern the failure of adjunctivity in  :  

 

“A sentence   is taken as a contrapresentive thesis of a 

theory iff   is both a thesis and an antithesis of the theory. Let us 

agree that a theory is contrapresentive iff it has contrapresentive 

theses. A theory is trivial iff all sentences of its language are theses. 

Trivial systems and inconsistent theories with simplification or 

adjunction elimination are contrapresentive.   is contrapresentive, but 

neither trivial nor inconsistent. Contrapresentationism is the view that 

a contrapresentive theory, such as  , is true.  

 

We say that two formulas   and   of a theory   are 

connected iff   and   are theses of   only if also the adjunction 

     is a thesis of  . Two sentences disconnect with each other iff 

they do not connect with each other. A sentence is disconnected iff it 

disconnects with some sentence. A set b is disconnected iff for some 

set a the sentence     is disconnected. Paradoxical theses of   are 

disconnected theses of  , and vice versa. It is straightforward that if   

is not a thesis of   then   connects with all sentences, and further that 

all maxims connect with all sentences. All sentences are self-
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connected and the relation connects with is also symmetric, but not 

transitive. A theory is disconnected iff it has disconnected theses. A 

topic is disconnected iff a true theory about it is disconnected and 

disconnectionism is the view that there are sound disconnected 

theories. Some paraconsistent logics, such as the ones following the 

approach by Jaskowski, are non-adjunctive. But such logics do not in 

and of themselves have disconnected theses, though extensions of 

such logics with suitable comprehension principles or semantic 

principles may be disconnected if not trivial.” 

 

We say that a theory is prosistent iff it is not the case 

that there is a sentence   which is a thesis as well as an antithesis of 

the theory, and else the theory is contrasistent. A theory is 

inconsistent iff some antilogy (negation of a tautology) is a thesis of 

the system, and else it is consistent. Typically, a theory will be 

prosistent iff it is consistent; but   is contrasistent and consistent, as is 

the volutionary approach we relate below.  

 

In my opinion the Zermelo-Fraenkel axioms in classical 

set theory is a nearabout haphazard collection which was isolated in 

perhaps an ad hoc manner, but one might consider that the original 

Zermelo axioms were chosen by Zermelo on the basis of their usage in 

some important mathematical constructions accessible to him. To me 

it has always seemed that the prevailing use of ZF-like axioms of set 

theory at best could have a preliminary justification as it may account 

for structures as mathematicians came to believe in on account of 

Cantor's work and that of others and in rare cases on account of their 

own mathematical practices.  

 

It is true that a semantical sort of justification came to 

be attempted for even ZFC with the postulation of a so-called 

cumulative hierarchy by Zermelo in 1930, i.e. 22 years after the 

publication of his original axioms; this gave birth to the purported 

iterative conception of sets. Clearly informal semantical ideas akin to 

the iterative conception of sets were also at play in the independent 

work of Skolem and Fraenkel to suggest the replacement axiom 
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schema, and as well in the postulation of the axiom of regularity or 

foundation by von Neumann in 1925.  

From my point of view, there is no intended model for 

ZFC or even Zermelo set theory or even Second-order arithmetic. This 

is because the power set operation in   is always paradoxical in the 

sense that   |     is paradoxical in £ for any set u of  ; for this see 

section 7 of Bjørdal (2012). Librationism radicalizes the predicativist 

doubts concerning power sets, and to my mind gives a more precise 

rationale for why we should not let our theories be over-powered by 

the assumption that some sets have non-paradoxical power sets.  

 

However, I do not believe that ZF is inconsistent; rather, 

I think that at most just countable Henkin style models of ZF exist. I 

have more precisely come to think that the most reasonable model of a 

formal logical or mathematical theory simply is a real number, and I 

then use the term “real number” as in set theoretic parlance for “set of 

natural numbers”. The justification for this way of thinking in terms of 

what I consider real models is that we by means of appropriate coding 

techniques may identify the formulas of the formal language of the 

system to be modeled with natural numbers from the external point if 

view. In Bjørdal (2014A) these ideas are made more precise.  

 

By means of a Herzberger style revision semantics for £ 

we at its closure ordinal   (Koppa) have a correlated real number 

     so that a natural number associated by the external coding with 

a formula is in the real number      iff it is to hold by the 

(minimalistic) librationist semantical set up.  

 

In our account in Bjørdal (2014) of the closure ordinal 

we call   it is assumed to be   -admissible for expositional reasons 

that connect with elegance of proofs, but less is needed according to 

results by Welch (2011). Welch and others have also related to me in 

private communications that the Infinite Time Turing Machines and 

the Herzberger style semantics can simulate each other, but at the 

moment I do not have a reference for this. 
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It bears mentioning that   is fully impredicative and has 

a proof theoretic style ordinal above the ordinal Takeuti gave for 

  
                as Bjørdal (2012) shows how £ accounts for 

PA +  transfinitely iterated inductive definitions  +  virtually all of Bar 

Induction in manners not infested by paradoxicality, and thus 

surpasses the Big Five of the Reverse Mathematics Program in 

strength.  

 

Bjørdal (2014A) shows that   + The Skolem Cannon + 

The Fraenkel Postulate gives an interpretation of ZFC if ZFC is 

consistent through extending an interpretation of ZF by Friedman 

(1973) in a system S which is ZF minus extensionality with collection 

and weak power.  

 

In   the novel operation librationist capture is 

instrumental in appropriate restricted contexts where it entails 

collection, specification and choice. The novel impredicative 

operation domination is based upon a utilization of the librationist 

truth predicate, and domination supplants the paradoxical power set 

operation in  . The domination operation invokes the impredicative 

fixed point operation we call manifestation point that was articulated 

without that name for precedent type free systems in Cantini (1996) 

and with roots in Visser (1989) and earlier work by Kleene and Gödel.  

 

We show in Bjørdal (2014) how we may combine the 

use of librationist capture and domination to isolate precisely the 

definable real numbers in £, and the domination operation ensures that 

the definable real numbers are Dedekind complete. Importantly, an 

isolation such as we provide of definable real numbers in   is not 

possible in classical set theories by results of Hamkins et al. (2013). 

Future work will in part concentrate upon exploring topological 

consequences and repercussions from the fact that the domination set 

of the set of definable real numbers is a  -algebra in order to generate 

measures with desirable features. The hope is that these and related 

matters will help shape definable analysis. 
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Moreover, if   is a non-paradoxical empty set of   then 

already   |     has infinitely many non-paradoxical members. 

Notice that by this there are infinitely many distinct non-paradoxical 

empty sets. So extensionality fails essentially in £, and for all 

extensions. On these matters, consult primarily Bjørdal (2012). 

It follows almost as a corollary from the above that 

Cantor's arguments do not provide for uncountable sets according to  . 

I emphasize that Cantor's arguments are completely valid reductio 

arguments, but they both smuggle in paradoxical assumptions so that 

according to   the conclusion that there are uncountable sets is not 

justified. However, £ agrees that there are sets which are not listable. 

Bjørdal (2012) so far gives the best librationist account on these anti-

Cantorian or para-Cantorian facets of librationism. 

 

Nevertheless, I purport to have shown in Bjørdal 

(2014A) that   believes that it has a standard model of ZFC if ZFC is 

consistent. A kindred construction going up to Mahlo cardinals is 

related in Elements of Librationism, so that   believes that it has a 

standard model of ZFC plus the Mahlo-axiom in question if the latter 

is consistent. Nevertheless these conditional interpretations   has of 

strong theories are countable from the perspectives outside the 

restricted quantifiers, and so there is nothing Skolem-untoward with 

there being such intepretations in £ if the theories mentioned are 

consistent. 

 

In the 1990s I already had some inklings on how to go 

about in a novel and unified way concerning the paradoxes, but this 

was still imprecise and programmatic such as in Bjørdal (1998) as I 

had the disadvantage and advantage of being trained foremostly as a 

philosopher and not as a mathematician. I already in that decade came 

to think that Cantor's proofs of the existence of uncountable sets are 

really genuine paradoxicalities dressed up in sheeps' clothing as 

something else, but it was not until Bjørdal (2005) that I published a 

clear statement that related a precedent of   in justification of a 

denumerabilist philosohy rejecting Cantor's conclusion without 

rejecting the validity of his arguments.  
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As we know, Cantor's entirely valid arguments have 

exercised a profound and lasting influence upon mathematics up until 

today, but I believe and hope that the non-absoluteness and other 

implausible features of classical set theory and increased interest in 

computational issues will diminish the interest in the Cantorian points 

of view.  

I finally write some on the volutionary philosophy   and 

related volutions of particular arithmetics, and I do this by adapting 

from the abstract of my recent talk Bjørdal (2017) and other recent 

works that just were submitted. 

 

At Trends in Logic XVI in Campinas and after in seminaries at 

Universitetet i Oslo and at Universidade Federal do Rio Grande do 

Norte I talked about volutionary arithmetics which shifts attention to 

the set   of sentences whose negation are not theses of the formal 

arithmetic   as traditionally conceived; we presuppose that   is 

axiomatized so only sentences are derivable and only modus ponens is 

a primitive inference rule. It is straightforward to give such a 

sententialist axiomatization given the insight that we only have to 

presuppose modus ponens as a primitive inference rule to axiomatize 

first order logic; the latter idea can be traced back to Tarski and found 

exposed e.g. in Hunter (1971) and Enderton (1972).  

 

Volutionism suggests that we alter how to think about 

fundamental matters e.g. in that the standard Gödel sentence of   in   

is taken as a textbook liar sentence, and so the volutionary turn gives 

occasion to reinterpret issues concerning decidability and 

computability as other sentences independent of   are treated 

similarly; this is connected with predicative limits, as hinted towards 

below.  

 

As we said above volutionary systems cannot be 

subsumed under so-called paraconsistent approaches. Nevertheless, if 

  is the standard Gödel sentence for   both   and      are theses of  ; 

so modus ponens does not, but exotic induced inferential principles 

modus maximum, modus conditionalis and modus antecessor hold for 

 .  
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The volutionary resolution of paradoxes has some 

similarities with that of the   as related above. A deviant volutionary 

truth predicate        defined              is introduced, and it is 

straightforward to show that   is a thesis of    iff        is a thesis 

of  . Moreover, we have minimal justifications (see next paragraph) 

for the Reflection-schema           and what we dub the 

Flection-schema            being theses of  . 

Let formula   with just the free variable   be   -limited 

in  precisely if it is a   -formula and   proves           
         for some    formula   with just   free. Recall predicate sub 

in Smorynsky (1977) p. 837 which functions so that 

                         . Let                       if 

      ,  else  . Let PAIR be Cantor's pairing function and the 

projections of a natural number              .    |   is short 

for              .      is an abbreviation of                   . 
A thesis of   is maximally justified if also a thesis of  , and else just 

minimally justified. We have shown that there is a minimal 

volutionary justification for          |         if      is   -

limited in  , and thence of a volutionary style recursive 

comprehension                 .  
 

The previous paragraph point to matters that may be of 

interest combined with the weak completeness theorem of      in 

Simpson (1999) p. 93 and other weak assumptions to secure some sort 

of volutionary aritmetical models for stronger theories of interest. An 

ingredient of such an approach would be to have   already include a 

transfinite progression of consistency statements upon a base 

arithmetic as with Feferman (1962) and earlier Turing (1939).  

 

The highly predicativist and iconoclastic volutionist 

philosophy   may be justifiable, and it has an interest in the way it 

reinterprets foundational phenomena. But these are matters which 

must be considered and weighed carefully, and it may on the other 

hand be that impredicative systems such as   are justified by their own 

impredicative philosophies. 
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SET THEORETIC PLURALISM 

 
Toby Meadows 

 
Over the last decade or so, pluralistic interpretations of set theory have 

reappeared in discussion of the philosophy of set theory and set 

theory's role in the foundations of mathematics. My goal in this article 

is to discuss the underlying motivations for such views and to examine 

how different programmatic agendas lead to different approaches to 

pluralism in this context. To give the article some shape, I will take 

three set theorists and their philosophies as case studies: Saharon 

Shelah, Joel David Hamkins and John Steel. Each of these set 

theorists espouse versions of pluralism which reflect quite distinct 

motivations and aspirations. 

 

However, I want to stress up front that the goal of this paper is to 

draw out philosophical positions rather than undertake painstaking 

exegesis. Each of these set theorists draws on a deep background of 

set theoretic research from which they have developed their 

philosophical attitudes. The results are rich and subtle. As such, I will 

be forced to ignore some aspects of their views by smoothing off some 

of the more baroque (and fascinating) details. As a result, there may 

be a certain amount of straw and caricature in my depictions of these 

positions. On the positive side, I hope that this simplistic approach 

will make clearer the intense interaction between philosophical 

attitude and set theoretic outlook. 

 

1. Why pluralism? ... The folk story 

 

In the beginning there was Cantor's theorem. It told us that there could 

be no surjection from the natural numbers onto the real numbers. Or 

more picturesquely, there are more real numbers than natural numbers. 

A staggering result: there are different sizes of infinity! But as soon as 

one has taken in this revelatory result, another (very natural) question 

should leap to mind: 
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Question 1. Is there some size of infinity strictly between that of the 

naturals and the real numbers? 

 

This, of course, is the question underlying the infamous 

Continuum Hypothesis (CH). If the answer is no, then CH is false. At 

first blush, it's the obvious question to ask. We've just opened the door 

into the realm of the transfinite; we've seen that the naturals and the 

reals have different sizes; is there something in between? Moreover, 

the question appears to be an innocent and interesting combinatorial 

question outside the self-referential tricks bag wielded by logicians. It 

seems like a good mathematical question deserving of a good 

mathematical answer. 

 

Unfortunately, the question has proven extremely difficult, if not, 

utterly intractable. First, we learned that our foundational theory, ZFC 

has nothing to say on the matter. 

 

Theorem 2. Suppose ZFC is consistent. Then: 

 

(i)          (Godel); and 

 

(ii)         (Cohen). 

 

The first result was established using the constructible hierarchy, 

while Cohen's result was proven using the enigmatic technique of 

forcing. It would be fair to say that Cohen's result was surprising to 

the mathematical community at the time. Indeed, a period of anxiety 

ensued in which this newly discovered weakness of the ZFC axioms 

was thought to imply that our interpretations of set theoretic 

vocabulary are forced to bifurcate. One might interpret this as an early 

form of the pluralism discussed in this article. However, this line of 

thought quickly retreated - with Cohen - from a metaphysical form of 

pluralism back to the curious comforts of formalism. 

 

Despite this, hope was not lost. Just because ZFC cannot solve 

CH, perhaps some extension of ZFC can. So began the quest for new 

axioms. Arguably most prominent in this campaign has been the 
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Large Cardinal Programme. The extension of ZFC with such cardinals 

has yielded a surprising array of results with noticeable impacts in 

areas of ordinary mathematics. Here is an example of a more recent 

addition to that suite:   

 

Theorem 3. If there are infinitely many Woodin Cardinals, then every 

set of reals definable in the language of analysis is Lebesgue 

measurable. 

 

With results like this and others to hand, one might have been 

tempted to hope that it was just a matter of time before CH too 

succumbed. Alas, Cohen's forcing technique slams the door on this 

project too. For example, 

 

Theorem 4. Suppose ZFC + “there is a measurable cardinal” is 

consistent. Then 

 

(i) ZFC + “there is a measurable cardinal”     ; 

 

(ii) ZFC + “there is a measurable cardinal”    . 

 

At heart, this results from the fact that measurable cardinals are 

impervious to the effects of small forcing. Moreover, this result 

generalizes to all other known large cardinals! This limitative result 

raises a thematic question for this article: 

 

Question 5. What do these results tell us about the nature of set 

theoretic research and the interpretation of its language? 

 

1.1. Into the multiverse. 

 

The kinds of pluralism with which we are concerned emerge out of 

this and related problems. But first, it will be useful for the ensuing 

discussion to make a couple of contrasting definitions: 

 

  



46      Toby Meadows 

Definition 6.  
 

(i) A universe interpretation of set theory asserts that there is one 

correct way in which the 2 relation can be interpreted. 

 

(ii) A multiverse interpretation of set theory asserts that are many 

ways in which the 2 relation can be correctly interpreted. 

 

The universe interpretation is arguable the de facto standard view 

regarding how the language of set theory should be interpreted. And 

there is a lot to commend in the universe view: it's heuristically simple 

and elegant; it lines up with naive intuitions; and it appears to line up 

with mathematical practice. 

 

By contrast multiverse interpretations are frequently difficult to 

get one's head around. How could it be possible that the seemingly 

straightforward concept of membership has multiple meanings? Why 

do people entertain such views? In response, we propose the following 

argument template: 

 

(1) Problems like CH appear to deserve answers but are intractable. 

 

(2) This intractability is evidence that our understanding of sets is 

incorrect. 

 

(3) We should see that our notion of set is under-determined and as 

such, acknowledge a multiplicity of different interpretations for the 

membership relation. 

 

We should pause here a moment to note the philosophical linchpin 

in this argument. We are arguing that the epistemic difficulties of set 

theory are so great that they warrant a revision of out metaphysical 

outlook on the field. More bluntly, it appears that we cannot know 

these things, so perhaps there is nothing to know! 

 

Another thing to note is that the argument template - as it stands - 

is very weak. Just because we haven't found an answer to some 
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question is hardly a good reason - in general - to think that there is no 

answer. As such the move from (2) to (3) needs some bolstering.  

For the remainder of this article, I am going to explore three ways 

of doing this, through: 

 

(1) the limitations of justification; 

 

(2) a deferral to practice; and 

 

(3) an alternative perspective on the large cardinal programme. 

 

2. Intrinsic Limitations: Shelah 

 

My case study for this section is Saharon Shelah's the Future of Set 

Theory [Shelah, 1991]. 

 

In this is an enigmatic and fascinating paper we are given an 

insight into a perspective on set theory from one of the world's most 

gifted logicians. I am particularly concerned with two remarks made 

in this paper and I am going to use them to lever out an argument for 

a certain kind of multiverse interpretation of set theory. 

 

Shelah outlines five major methodologies of set theoretic research: 

 

(1) ZFC; 

(2) forcing; 

(3) inner models; 

(4) large cardinals; 

(5) ZFC + DC+some form of determinacy. 

 

He then remarks: 

 

From the point of view of adherents of ZFC (1 above) 

(and I tend to agree to a large extent) proving a 

theorem means proving it in ZFC, and the other 

attitudes are supplementary; forcing (2) is necessary to 

tell us when we cannot prove a theorem, large 
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cardinals (4) are needed in some consistency proofs 

and - by a happy coincidence - they are ordered on a 

linear scale. Finally, inner models (3) are used to show 

that large cardinals are necessary and, even better, to 

get equiconsistency results. [Shelah, 1991] 

 

For our purposes, the key point here is that real theorems are those 

proven in ZFC and the rest of these methodologies should be 

understood as ancillary. By way of explanation, he remarks: 

 

My feeling is that ZFC exhausts our intuition except for 

things like consistencystatements, so a proof means a 

proof in ZFC. [Shelah, 1991] 

 

One way to unpack this is to consider Gödel’s distinction between 

intrinsic and extrinsic justification. Typically intrinsic justification is 

delivered via self-evidence or some kind of conceptual analysis of the 

meaning of the terms in our language. One might say that the Axiom 

of Extensionality is intrinsically justified in that it is just part of the 

meaning of “set” that if two putative sets have the same members, 

then they are - in fact – the same set. Extrinsic justification, on the 

other hand, is wrought from the fruitfulness of the consequences of the 

principle involved. For example, one might argue that the Axiom of 

Choice is extrinsically justified on the basis of its value in set theory 

and mathematics at large. In general, if intrinsic justification is 

working well, it should be much stronger than extrinsic justification, 

which is obviously and intentionally defeasible. 

 

It seems clear that intrinsic justification is the most pertinent to 

Shelah's remark above. He appears to be saying that we are able to 

intrinsically justify ZFC but no more (with the possible exception of 

statements like Con(ZFC) or perhaps the existence of small, large 

cardinals like inaccessibles). This move is not without precedent if we 

widen our gaze. With regard to arithmetic, Dan Isaacson has argued 

that PA represents something like the intrinsic limit of the arithmetic 

sentences [Isaacson, 1992]. Thus, Rosser sentences are to be 

understood as true, but not really arithmetic: some extra-arithmetic 
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content is at play in these cases. Analogously in the case of set theory, 

we see Shelah arguing that statements like CH or the existence of    

are beyond the range of our intrinsically justified principles. 

 

If we return to our argument template, we see that Shelah has 

bolstered the move from (2) to (3) by arguing that there isn't any 

intrinsic justification that could settle a question like CH and as such, 

these questions don't really deserve answers after all. Implicit in this 

argument, is the idea that the defeasibility of extrinsic justification 

renders it unsuitable to the project of selecting suitable axioms for a 

foundation of mathematics. 

 

How then does this lead us to a multiverse position? It should be 

noted that nothing of the kind is suggested in Shelah's paper. But if we 

follow through on the argument template, it's not difficult to see where 

we might end up. In accepting ZFC as the limit of proper justification 

we open ourselves to the acceptance of multiple interpretations of the 

2 relation. We might wonder which interpretation should be 

understood as acceptable for such a position, but that interesting 

question is outside the scope of this paper. We, thus, have a motive 

and argument for a certain kind of multiverse position. 

 

2.1. A bump in the carpet. 

 

Despite saying that I will not be particularly concerned with exegesis 

in this article, it would be remiss of me not to discuss the following 

remark that Shelah makes with regard to where his comments leads 

him. He asks rhetorically: 

 

Does this mean you are a formalist in spite of earlier 

indications that you are a Platonist? [Shelah, 1991] 

 

and responds 

 

I am in my heart a card-carrying Platonist seeing 

before my eyes the universe of sets, but I cannot 

discard the independence phenomena. [Shelah, 1991] 
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This seems like a clear declaration of a deep-seated commitment 

to a universe interpretation of set theory. What is going on here? 

 

A distinction in philosophical logic is helpful here. In the literature 

on indeterminacy and vagueness, there are two mainstream 

approaches to the solution of the Sorites paradox: supervalution and 

epistemicism. The supervaluationist deals with indeterminacy in the 

meaning of some term by considering all of the different ways in 

which the meaning of that term could be filled out. In our context, this 

is the standard form for the multiverse interpretation of set theory. We 

have indeterminacy - as witnessed by the intractability of questions 

like CH - and we deal with this indeterminacy by admitting multiple 

interpretations of the membership relation. The epistemicist, on the 

other hand, looks at indeterminacy - not as a limitation of meaning - 

but rather as a limitation of knowledge. 

 

So the epistemicist admits that for all they know any one of a 

multiplicity of different interpretations of set theory could be the right 

one. And that's the salient distinction: there is a right one; we just can't 

know which one it is. 

 

I think the right way to understand Shelah is that he is an 

epistemicist with regard to how set theory should be interpreted. He 

believes that ZFC is the upper bound on what can be properly 

justified; and as such, this is the point at which knowledge rightfully 

ends. But he also believes that there is one correct interpretation of set 

theory. 

 

Thus, we see that even though Shelah is in a position to make an 

argument for a multiverse interpretation, he does not carry it out. 

Rather than going on and revising metaphysics on the basis of 

intractable epistemology we hold on to the universe view. Clearly, this 

leads us to a divergent, non-pluralistic view, but I don't think we 

should take this as any reason to reject the argument sketched in the 

previous section. Rather, we are seeing a further division in the logical 

space of solutions to our motivating problems. 
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3. Almost Naturalism: Hamkins 

 

Our next case study emerges with the work of Joel David Hamkins 

who has perhaps been the most vocal proponent of multiverse 

interpretations in recent years. An excellent overview of his 

perspective can be found in his paper the Set-Theoretic Multiverse 

[Hamkins, 2012]. In it, one finds: a number of arguments for his view; 

examples exploring relationships within and without set theory; and 

counterarguments to possible objections. Continuing in this spirit of 

this article, I am going to focus on one particular aspect of Hamkins' 

view. In this, I _nd the most convincing arguments for Hamkins' 

views. Moreover, I think there is room for some variations in this area. 

I'll start with a quote: 

 

While group theorists study groups, ring theorists study 

rings and topologists study topological spaces, set 

theorists study the models of set theory. [Hamkins, 

2012] 

 

The idea here is that set theorists study models of set theory in the 

same way various other mathematicians conduct their research. They 

are not so much concerned with the inner workings of particular 

groups, rings or topologies as they are with the relationships between 

such structures. He goes on, 

 

Set theory appears to have discovered an entire cosmos 

of set-theoretic universes, revealing a category-

theoretic nature for the subject, in which universes are 

connected by the forcing relation or by large cardinal 

embeddings in complex commutative diagrams, like 

constellations filling the night sky. [Hamkins, 2012] 

 

Surely anyone familiar with contemporary set theory has some affinity 

with the rather pleasing picture Hamkins paints. How does this lead us 

into the multiverse? There are two parts to the argument: first, we 
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need some methodology for understanding the ontology of a particular 

discipline; second, we need to apply that methodology. 

As to the first question, Hamkins asks us to defer to the experts on 

the topic at hand: set theorists. Just as we defer to physicists with 

regard to which subatomic particles exists; or biologists on which 

collections of organisms constitute a species; we should defer to the 

set theorist on the topic of set theoretic ontology. This kind of move is 

familiar in philosophical circles and often goes under the name 

naturalism. The idea is that (via Quine) we regard ontological 

questions as being on a par with questions of natural science. 

 

As such, if our best scientific theories tell us that some entity 

exists then we should accept that such an entity exists. 

But some care is required here. In general, mathematics' - an in 

particular set theory's - position in the pantheon of natural sciences is a 

little vexed in the philosophical literature. 

 

In particular, Quine was notably reluctant to admit set theory and 

its excesses. As such, we must admit that the kind of naturalism 

presented here is somewhat unorthodox, although by no means to be 

ruled out of court. 

 

This leads us to the second part of the argument: applying the 

methodology. Hamkins' claim is that if we defer to the practice of set 

theorists, then we shall see that models of set theory are an integral 

part of the metaphysical furniture. And as such, they should be 

admitted into the ontology of this field. The question of whether set 

theoretic practice is like this is, of course, a difficult one. Perhaps the 

model theory of set theory is just that: a part (albeit an important one) 

of set theory, but not so large a part that it should override its original 

ontological outlook. On the other hand, it is difficult to find much 

space in set theory untouched by model theoretic techniques. I don't 

propose to settle this issue here. 

 

Our argument for a multiverse interpretation of set theory is 

motivated by a naturalistic deferral to set theoretic practice. The move 

from (2) to (3) in our argument template is bolstered by claiming that 
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set theoretic practice has already moved beyond seeking answers to 

questions like CH and is already embedded in the multiverse view. In 

a sense, the argument is that the battle over the multiverse has already 

been fought and won (or lost, depending on one's perspective).  

 

4. The End of the Road: Steel 

 

Our final case study comes from John Steel's paper, Gödel’s Program, 

in which an axiomatic multiverse theory is presented [Steel, 2014]. 

The motivation for this multiverse perspective comes from two 

observations that emerged from research into the large cardinal 

programme: 

 

Observation 1: All known natural strengthenings of ZFC can be 

calibrated by consistency strength against some large cardinal. 

 

Observation 2: Increasing large cardinal strength increases the 

agreement between natural theories. 

 

Regarding Observation 1, the following results are apropos. 

 

Theorem 7.  
 

(i)    exists    
  sets are determined. 

 

(ii) Con(ZFC+there is a Woodin cardinal)    Con(ZFC+   
  sets are 

determined). 

 

And of course a positive answer the following infamous open question 

would add significant support for this observation: 

 

Conjecture 8. Con(ZFC+   a supercompact)   Con(ZFC + PFA). 

 

The underlying thought is that the large cardinal hierarchy gives us 

a linearly ordered measure of consistency strength. The restriction to 

natural theories is not mathematically precise. The basic idea is to 

restrict the strengthenings of ZFC to questions of combinatorial 
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interest and avoid logical statements involving consistency or self-

reference. With regard to the second observation, the following results 

are pertinent. 

 

Phenomenon: Let       mean      |       . Then 

 

For any two 
natural 

theories,     
extending... 

 
ZFC 

 

we 
have… 

    
    

  

or 

    
   

 
ZFC + a 

measurable 
cardinal 

    
       

   

 
ZFC + infinite 

Woodin 
cardinals 

    
       

   

 
ZFC + infinite 

Woodins & 
Measurable 

Above 

                        

 

This is not a theorem as the notion of a natural theory is not 

precise. That said, some reasonable assumptions can be used to tighten 

these statements into theorems if required. The essential idea for the 

proofs is that we force in one direction and use inner model theory in 

the other. The philosophical upshot is that more mathematics is being 

fixed in place as we strengthen via the large cardinals. For example, 

we see that with infinitely many Woodin cardinals, it is not possible 

for natural theories to disagree on any statement articulated in the 

theory of analysis. 

 

Putting these observations together, we see that: there is only one 

road up in terms of strength; and following that road leads to increased 

agreement between all theories. So why not follow that road? 

 

From our discussion in Section 1, we know that there is an upper 

bound to how much agreement can be obtained. The continuum 

hypothesis vacillates under the effects of forcing and so the proof 

techniques used to establish the phenomenon above will not work. 
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In Section 1, we took this kind of result as evidence for pessimism 

about the ultimate value of the large cardinal programme for deciding 

questions like CH. Steel's motivation turns this pessimism on its head. 

Rather than seeing these limitations as a failure on the part of the large 

cardinal programme, we are invited to see them as symptomatic of 

some failure on the part of the questions being asked. If we accept that 

Observations 1 and 2 are on the right track, then we should take the 

large cardinal programme more seriously. We should take it that large 

cardinals provide the right way to track strength. And - this is the 

important part for multiverse considerations - we should take it that 

the agreement wrought through large cardinal addition demarcates the 

space of reasonable mathematical questions. In a nutshell, good 

mathematical questions are those questions that all natural theories 

agree on. 

 

But how do we get a multiverse interpretation out of this? This 

comes from observing that the questions that are agreed upon by 

natural theories are questions which are impervious to forcing while 

indeterminate questions, like CH, are vulnerable to its effects. So to 

account for this distinction we consider a plurality of interpretations of 

set theory which is closed under generic extension and refinement: 

forcing and its inverse. Interpretations of this kind go under the title 

generic multiverse. 

 

If we return to our argument template, the move from (2) to (3) is 

bolstered by taking the large cardinal programme more seriously than 

arbitrary questions posed in the language of set theory (like CH). We 

justify our revision of the metaphysics of set theory on the basis that 

the large cardinal programme and its measure of theoretical strength 

(not our intuitive theory of collections) delimits the range of 

reasonable questions in mathematics. The key point here is that we are 

not so much throwing our arms up in despair as discovering a new 

way of understanding many of the more profound results in set theory 

over the last three decades. 

 

5. Concluding Remarks 
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This article has considered three very different ways of motivating 

multiverse understandings of set theory. I doubt this list is exhaustive, 

but it provides some evidence that the diversity involved in set 

theoretic pluralism isn't merely at the level of the interpretations of the 

language of itself. At bottom, each of these positions is driven by the 

deep and arguably disappointing incompleteness that appears to be 

intrinsic to our set theoretic foundations. They each respond by 

revising our metaphysical outlook on the basis of this epistemic 

difficulty.  

 

Our simple version of Shelah revises because they envisage no 

possibility of properly justifying principles that go beyond ZFC. Our 

simplification of Hamkins revises because they believe that set 

theoretic practice has already revised in the face of these problems and 

pluralism is a more honest representation of this state of affairs. Our 

quick overview of Steel suggests revision because recent results 

suggest that our understanding of the purpose of set theoretic 

foundations was misguided all along. 
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THE DEVELOPMENT OF  
AORISTIC MODAL LOGIC 

             
Christopher Gifford 

 
Saul Kripke (1973) distinguished three pairs of distinctions; that of the 

analytic and synthetic, that of the a priori and a posteriori, and that of 

the possible and the necessary.  The analytic and synthetic distinction 

was semantic and pertained to the meaning of words.  Such a 

distinction was a categorisation of truth; ‘analytic’ indicated truth in 

virtue of the meaning of the concatenation or juxtaposition of items of 

vocabulary and ‘synthetic’ indicated truth in virtue of a property in 

addition to the meaning of the concatenation or juxtaposition of 

words. 

 

The a priori and a posteriori distinction was associated with 

epistemology – more specifically, with knowledge states of agents in 

the world – a priori indicated knowledge that did not depend on 

experience, and a posteriori indicated knowledge that did depend on 

experience.  The third distinction – a distinction that pertained to 

modality – was also a method of categorisation of truth and was 

presented as a metaphysical distinction; more specifically, a 

distinction that pertained to that of which is true in possible worlds 

(ways in which the world can be true). 

 

Kripke’s three distinctions categorised true sentences and 

categorised false sentences.  Applied to problems within the discipline 

of philosophy, the three distinctions facilitated a method to analyse 

problems and to establish responses to the problems.  The 

establishment of a modal distinction was one that emphasised the 

salience of possible worlds, their importance in the formation of 

distinctions, and how distinctions inter-relate.  By comparison of an 

example, the de re/de dicto distinction was a method that disentangled 

different meanings in ambiguous sentences expressed in natural 

language.  The de re/de dicto distinction pertained to metaphysical 

necessity and metaphysical possibility understood in terms of possible 
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worlds; for example, ‘The number of planets is necessarily nine.’ (de 

re) and ‘Necessarily, the number of planets is nine.’ (de dicto).  Truth-

value(s) of the former and of the latter are not determinately identical 

(since there are either determinately distinct or not determinately not 

identical). 

 

Kripke also presented an argument against contingent identity
1
.  

The argument against contingent identity was one against the 

existence of contingently identical objects.  Contingency was a variety 

of possibility – defined in modal logic as truth of a contingent 

proposition in a possible world and truth of the negation of that 

contingent proposition in another possible world.  (One definition of 

possibility in a possible world semantics was truth in a possible world, 

and one definition of necessity was truth in all possible worlds.) 

 

One interpretation of Kripke’s argument is that the argument 

against contingent identity proposes that the property of ‘is 

contingently identical to a thing’ is an ontological entity that is 

sufficient to distinguish an object that has that property from an object 

that is identical to itself.  Such an interpretation is an argument of 

metaphysics in the sense that Kripke’s argument appealed to identity, 

objects, possible worlds, properties, the substitutivity of identity, and 

Leibniz’s Law.  Putative examples of contingent identity include the 

use of names or different descriptions for the same putative object 

such as ‘Goliath’ (the statue) and ‘Lumpl, the clay’, both of which 

putatively refer, denote, or designate the same putative object. 

 

Modal logic is a powerful tool that systematises distinctions in 

philosophy which would have otherwise remained obscure if left 

unsystematised and without a formalisation in natural language.  The 

models in the logistic of modal theory are part of a useful 

methodology to account for different semantic assignments of 

meanings to items of vocabulary by the assignation of meaning to 

names and predicates.  Following the introduction of modal logic and 

possible world semantics to express possibility, contingency, and 

                                                           
1. Kripke (2011): 17-18. 
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necessity, modal logic has also been used as a method to shed light on 

vagueness and indeterminacy by the introduction of aoristic operators 

that express determinacy and indeterminacy. 

 

A traditional problem associated with vagueness is that of the 

sorites paradox – sometimes referred to as little-by-little arguments.  

An example: let us start with the case of a hirsute person – a non-

vaguely bald person – who has thousands of strands hair on their head.  

The removal of one hair from their scalp makes no purported 

difference between a hirsute person and a bald person (that was an 

induction step that you can render as an instance of mathematical 

induction
1
).  So, if an individual were to remove one hair from the 

person’s scalp then the result would still be a hirsute person.  Yet if 

the individual were to repeat the induction inference thousands of 

times and continue to remove one hair at a time then the result would 

be a man with two hairs in his scalp – a bald man – yet, one who is 

hirsute in accordance with the line of reasoning that the removal of 

one strand of hair does not make the difference (a sharp cut-off) 

between a hirsute man and a bald man. 

 

The traditional problem was attributed to Eubulides of Miletus
2
 

and called a ‘sorites’ paradox because its introduction was 

traditionally presented subject to a heap of stand – ‘soros’ – coming 

from the ancient Greek.  Popular approaches to resolve the problem 

have been the introduction of a formal modal framework to express 

vagueness – sometimes conceptualised as indefiniteness, 

indeterminacy, or unclarity – as a modal operator.  On such a formal 

approach, the way in which to reason about indeterminacy and the 

means by what is meant by ‘indeterminacy’ or ‘vagueness’ is made 

more formal, rigorous, and precise.  For example, borderline objects 

which occupy a concrete space and time (or, potentially abstract 

objects in non-space and non-time) in between two extremals of a 

sorities series – for example, in between the hirsute man and the bald 

                                                           
1. See Dummett (1975). 

2. See Williamson (1994): 9. 
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man – are classified as that which is indeterminately hirsute and that 

which is indeterminately bald. 

 

Although the modal system space for aoristic modal logic is in a 

stage of development (in stark contrast to the existence of a Hasse 

diagram of modal systems for, for example, K, D, M, 4, B, 5, and other 

systems for alethic modal logic, epistemic logic, information logic, 

doxastic logic, provability logic
1
), there has been more of a consensus 

that the appropriate operator for indeterminacy has a logistic and 

semantic structure to that of contingency.  Such a logistic structure is 

explicable by the use of the item of vocabulary ‘whether’ to express 

indeterminacy in a modal logic and of the item of vocabulary 

‘whether’ to express contingency in a modal logic. 

 

The close logistic structural similarity between contingency and 

indeterminacy is demonstrated in a comparison between Kripke’s 

argument against contingent identity and Gareth Evans’s argument 

against vague objects
2
.  Evans asked us: do indeterminately identical 

objects exist?  One interpretation of Evans’s argument is that, for an 

object a that is indeterminately identical to another object b that is 

determinately identical to itself, a can be determinately distinguished 

from b.  One justification for such a determinate distinction is the 

existence of the property of being indeterminately identical to an 

object.  The dialectic present in the previous two sentences is 

analogous to Kripke’s and Evans’s arguments, whereby contingency 

and indeterminacy are both expressed in the same syntactic position as 

an (aoristic) modal operator in the lambda calculus in order to express 

a property. Evans’s argument was responsible for ‘spilling much ink’ 

in the literature on vagueness and Joseph Moore introduced a 

proposed new argument against vague objects
3
.  I have argued that 

Moore’s argument was a disguised variant of Evans’s argument 

against vague objects
4
.  At the end of that paper I argued for the 

concatenation of aoristic and alethic modal operators as a formal 

                                                           
1. See Boolos (1993). 
2. Evans (1978). 

3. Moore (2008). 

4. Gifford (2013). 
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notation to express properties in the lambda calculus.  One prominent 

example that results from such a concatenation is that of indeterminate 

contingency; for example, it is indeterminate whether there exists an 

object that is identical to another object in a possible world and 

indeterminate whether that object is distinct from another object in 

another possible world
1
. 

 

One result of the acceptance of indeterminate contingency is that it 

is indeterminate whether a possible world is identical to another 

possible world (in accordance with the Strong and Weak Kleene truth 

tables).  Such an outcome poses a challenge to those who want to 

revise classical standard possible world semantics; the syntax and 

semantics of classical possible world semantics do not permit such 

indeterminacy if only because the meta-theory is classical.  One 

alternative to Kripke frame semantics that incorporates vagueness or 

indeterminacy is Barnes and Williams’s theory
2
 in which there exist 

halos of indeterminacy that represent non-determinately incorrect 

possible worlds in accordance with each possibility and there exist 

modal selection functions which select a multiverse.  Other 

approaches exist; see Taylor’s (2017): 63 and Warren’s (2017): 112.  

 

An alternative approach is the introduction of another symbol in 

the meta-theory.  Usually a turnstile is used to express truth-in-a-world 

or satisfaction – here ‘ ’ is used.  Another turnstile – for 

indeterminate satisfaction – that expresses ‘indeterminately satisfies’ 

can be introduced (e.g. ‘ ’) in a world.  Let ‘ ’ be a modal aoristic 
operator for indeterminacy that expresses ‘It is indeterminate that’.  

Thence the conditions on frames can be relaxed from: 

 

        if and only if in  :         

    if   then   if and only if in  :         or in       
    It is necessary that:   if and only if       for all   such that 

     

                                                           
1. For a further discussion on vague existence see Hawley (2002). 

2. Barnes and Williams (2008).  For a response see Ecklund (2011). 
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(where ‘ ’ is a constant for the set of all possible worlds, ‘ ’ is a 
negation, and ‘ ’ and ‘ ’ are propositions, ‘ ’ is an accessibility 
relation, and ‘w’ and ‘u’ are variables for possible worlds) 

to: 

 

        if and only if in          
      if and only if in   and               and              
        if and only if in   and               and              
      if   then   if and only if in        
    if   then   if and only if in       . 

 

The guiding idea here is that an indeterminate proposition results 

in the indeterminate identification of worlds, which in turn, results in 

indeterminate satisfaction.  One interpretation of the conditional above 

is that it expresses determinate preservation of truth.  Both Weak and 

Strong Kleene truth tables include entries with indeterminacy for a 

logical equivalence if there is indeterminacy on one side of a logical 

equivalence.  Accordingly, the above conditions can be taken in a 

Weak/Strong Kleene spirit. 

 

A penultimate point.   
 

One available interpretation of the variety of indeterminacy 

expressed in the above possible world semantics is that it manifests as 

a variety of commensurability. Understand commensurability as the 

possibility of the existence of a common measure between a thing and 

a thing.  Possible worlds are a measure of possibility and necessity; 

the existence of one and only one possible world suffices as a method 

to establish whether a proposition is possible; a comparison between 

all worlds is required as a method to establish whether a proposition is 

necessary.  For indeterminacy, if it is indeterminate whether   then 

the identification of   across possible worlds is indeterminate (either 

because of the indeterminacy of the identity of possible worlds or vice 

versa).  Hence, the result of indeterminate commensurability since it is 

indeterminate whether there is a common measure between a possible 

world and a(nother) possible world.  
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A final point. 

 

Indeterminacy in logic and philosophy is standardly understood as 

absence of fact
1
 and one appropriate doxastic treatment of the 

indeterminate is that humans are uncertain of that which is 

indeterminate; that is, on such an eventuality, human agents have a 

lack of knowledge of the probability of an outcome.  In Quantitative 

Finance, mathematical models are implemented which incorporate the 

concept of randomness as a method to model contracts; one of these is 

the stochastic differential equation:                    where   is 

a Wiener process).  The incorporation of randomness in this manner to 

model finance is an acknowledgement of the non-deterministic 

behaviour of assets
 2

. 

 

One question elicited from the above presented possible world 

formal semantics is prescriptive: ‘how ought a logician consolidate a 

maximal amount of information from a method of reasoning to and 

from indeterminacy?’  The manner of representing randomness in 

Quantitative Finance provides a prescriptive method of reasoning with 

indeterminacy.  Namely, express indeterminacy as randomness in the 

semantic and syntactic form of modal operators in a multi-modal 

logic.  Then the above presented possible world formal semantics can 

be altered so that ‘ ’ and ‘ ’ are read as ‘randomly satisfies’ and ‘it is 
random whether’ respectively. 

 

A remaining question: what of the semantic and syntactic 

interaction between an aoristic and random operator in a multi-modal 

logic?  Then, since randomness of indeterminacy elicits random 

determinacy, the challenge is to provide an account of how 

‘indeterminate  ’ and ‘determinate  ’ are inter-substitutable salva-

veritate within the scope of a randomness operator.  I leave the 

solution to the reader. 
 

  

                                                           
1. See Field (2003).  
2. See Wilmott (2006), 55-70. 
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AN INTRODUCTION TO RAMSEY ALGEBRAS 

 
      Zu Yao Teoh 

 
1. Ramsey Algebra  

Ramsey algebra can be said to be a Ramsey-type combinatorics for 

algebras. We will come to the history, but first we explain what a 

Ramsey algebra is. We define an algebra to be any structure modeling 

a purely functional first-order language. Suppose that ℒ is a purely 

first-order functional language. A term   of ℒ is said to be         if 

    no variable appears more than once in   and     the indices of the 

variables appearing in   is increasing going from left to right. For 

instance, if ℒ      denotes the language of groups, then          is 

an orderly term of     . If ℒ        is the language of rings, then 

             is an orderly term of ℒ       . Denote the set of 

orderly terms of ℒ by OT(ℒ). If        OT(ℒ) and the index of the 

variable occurring last in    is strictly less than the index of the 

variable occurring first in    then we write       . We call an infinite 

sequence         of orderly terms an            sequence if     
implies       for all    .  
 

Suppose that 𝒜 = (𝒜, ℱ) is an algebra and let ℒℱ denote the 

language 𝒜 models. Let    denote the set of infinite sequences of A. 

If   ⃗  ⃗⃗    , then we say that  ⃗ is a reduction of  ⃗⃗ if the following 

holds:  there exist an admissible sequence           of orderly terms 

of ℒℱ such that, for each    ,  ⃗      
𝒜  ⃗⃗ , where  𝒜  ⃗⃗  means the 

interpretation of the term   in the model 𝒜 under the assignment 

        ⃗⃗ for each term   and      Thus, for instance, if   ⃗⃗  
        and                                           

then the sequence  ⃗            is a reduction of  ⃗⃗. Define  

 

                                                 ℱ  ⃗⃗  { 𝒜    ⃗⃗⃗⃗        ℒℱ } ;                                            

(1)  
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We also say that a sequence   ⃗      is homogeneous for       

if    ℱ  ⃗   is contained in X  or disjoint from X .  

 

Definition 1.1 (Ramsey Algebra).  Suppose that 𝒜 = (𝒜, ℱ) is an 

algebra. Then   is said to be a Ramsey algebra if, for each   ⃗⃗      

and each    , there exist a reduction   ⃗      of   ⃗⃗  that is 

homogeneous for X .  

 

A classic theorem of infinitary combinatorics reads:  

 

Theorem 1.1 (Hindman). Every semi-group is a Ramsey algebra.  

 

2. History 

 

The history of Ramsey algebras can be traced back to Carlson's work 

on topological Ramsey spaces in his 1986 manuscript [1]. Inspired by 

the Ellentuck topology, Carlson's result on the topological Ramsey 

space of variable words has profound consequence in infinitary 

combinatorics because of its unifying power. Hindman's theorem and 

the dual Ellentuck theorem have straightforward derivations from 

Carlson's work. In turn, the dual Ellentuck theorem generalizes a long 

list of earlier results such as Ramsey's theorem, the Galvin-Rothschild 

theorem on n-parameter sets, etc. (What is called a topological 

Ramsey space is called a Ramsey space in [1]; later work by 

Todorcevic [5] generalized the latter notion and the former notion is 

commonly referred to as a topological Ramsey space in the modern 

literature.)  

 

Ramsey algebras enters the picture when a topological Ramsey 

space is generated by algebras. An abstract version of Ellentuck's 

theorem is key to relating Ramsey algebra to topological Ramsey 

spaces. In Carlson's own words: "The first step [in obtaining the main 

theorem of his manuscript] is to reduce the topological question of 

whether a certain structure is a [topological] Ramsey space to a more 

combinatorial question. This is accomplished by an abstract version of 

Ellentuck 's theorem…" For a space ℜ(A, ℱ) generated by an algebra 
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(A, ℱ) with a finite family ℱ, the combinatorial problem is phrased in 

the definition of a Ramsey algebra:  

 

Theorem 2.1. Let ℱ be a finite family of operations on A. then ℜ(A, 

ℱ) is a topological Ramsey space if and only if (A, ℱ) is a Ramsey 

algebra.   

 

3. Questions & Results 

 

Our work has revolved around the following three main questions: 

 

1. Extend the notion of a Ramsey algebra to heterogeneous 

algebras-structures that model many-sorted, purely functional 

first-order logic.  

 

2. What is a necessary and sufficient condition for an algebra to 

be Ramsey? 

  

3. How do we construct Ramsey algebras from known Ramsey 

algebras?  

 

3.1    Heterogeneous Ramsey Algebra 

 

Groups and rings are examples of algebras that model one-sorted 

languages. However, there are other naturally occurring algebras that 

are of a heterogeneous nature. Vector spaces for example, fall in this 

category. A vector space interprets a two-sorted functional language 

ℒ       -scalar multiplication and vector addition. The domain of a 

vector space thus consists of two phyla, the phylum of scalars (fields) 

and the phylum of vectors. How then should we extend the notion of a 

Ramsey algebra to heterogeneous algebras? In fact, Carlson's original 

work on the space of variable words involved elements from different 

phyla.  

 

Suppose ((  )    
 ℱ) is a heterogeneous algebra whose phyla are 

indexed by the set I and ℱ is a family of functions, each having as 
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domain a Cartesian product of some members of (  )    
and 

codomain some member   .  

 

To formulate heterogeneous Ramsey algebra, the notions of an 

orderly term, an admissible sequence, and a reduction introduced 

earlier remain unchanged, expect that they are now defined in the 

context of many-sorted logic. One additional notion is needed though, 

namely the notion of a sort, which is an  ⃗    . In order that Carlson's 

abstract Ellentuck theorem may apply, we define the analogue of Eq. 1 

as follows:  

 

Definition 3.1. If  ⃗⃗ is an  ⃗-sorted sequence, define: 

  ℱ
 ⃗  ⃗⃗  { ⃗       ⃗  ℱ  ⃗⃗      ⃗     ⃗       }                                            

A sequence  ⃗ is said to be homogeneous for   (with respect to ℱ) if 

  ℱ
 ⃗   ⃗  is either contained in or disjoint from  .  

 

For each sort  ⃗, we then have the notion of an  ⃗-Ramsey algebra:  
 

Definition 3.2. ( ⃗-Ramsey Algebra). An algebra ((  )    
 ℱ) is said 

to be an  ⃗-Ramsey algebra if, for each  ⃗        sequence  ⃗⃗ and 

    ⃗   , there exists an  ⃗        reduction  ⃗ such that  ⃗ is 

homogeneous for X .  

 

Definition 1.1 is, of course, a special case of Definition 3.2.  

 

Our work on the Ramsey algebraic property of vector spaces 

culminates in the following results: 

  

a. If the underlying field of a vector space is finite, then the 

vector space is an  ⃗-Ramsey algebra for all sorts of  ⃗.  

 

b. If the underlying field is infinite, then the vector space is an  ⃗-

Ramsey algebra if and only if  ⃗ is constant with value 1 or is 

otherwise non-constant but eventually constant with any value.  
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We also included the study of various algebras involving different 

combinations of matrix operations as well as generalizations of such 

algebras. The result can be found in [4].  

 

3.2. Characterization of Ramsey Algebra 

 

We return to algebras with a single phylum. Arguably the most well-

known result of the subject is Hindman's theorem. Apart from that, not 

many commonly encountered algebras are known to be Ramsey 

algebras. For example, infinite fields are not Ramsey algebras. This 

follows from a more general result that infinite integral domains are 

not Ramsey algebras. Of course, the Pigeonhole principle implies that 

any empty algebra, i.e. an algebra equipped with an empty family ℱ of 

operations, is a Ramsey algebra.  

 

We know exactly when a finite algebra is Ramsey (an algebra is 

finite if its domain is finite). Indeed, the following is known to 

Carlson: a finite algebra    ℱ  is Ramsey if and only if every constant 

sequence of elements of   can be reduced to a constant sequence of 

elements idempotent with respect to ℱ. An element   of   is said to be 

idempotent with respect to the family ℱ of operations on    if 

            for all    ℱ. If the domain of an algebra    ℱ  is 

infinite and ℱ consists only of unary operations, then to decide if the 

algebra is Ramsey amount to the question of whether a reduction to 

some sequence of points fixed by all operations in ℱ is possible; the 

precise statement can be found in [2]. The question as to when exactly 

is an infinite algebra Ramsey? is still open. 

  

A localized version called Ramsey Orderly Algebra has been 

proposed as a line for attacking the characterization problem. Ramsey 

orderly algebra shifts the focus from algebras to sequences, studying 

the algebra that can be generated from the sequence. The precise 

formulation can be found in [3], in which we derive some basic 

theorems concerning orderly algebras as well as presenting a case 

study in support of this formulation.  
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We also note that it is interesting enough to be able to characterize 

exactly when a groupoid, i.e. an algebra    ℱ  consisting of one 

binary operation,   is a Ramsey algebra.  

 

3.3. Constructing New Ramsey Algebras 

 

Can we construct new Ramsey algebras by taking Cartesian products 

of Ramsey algebras?  A Cartesian product of semi-groups is a semi-

group, hence a Ramsey algebra, but what about the general case? 

Namely, given a finite collection 𝒜  of Ramsey algebras, must ∏ 𝒜   

also be Ramsey?  

 

This is one of the main open problems we hope to know an answer 

to although we believe that the answer is "no". Nevertheless, we have 

a minor result, namely ∏ 𝒜   is Ramsey if at most one Cartesian 

component 𝒜  is infinite. This result can be easily deduced using the 

characterization of finite algebras based on the existence of 

idempotent reductions.  

 

What are other ways of obtaining new Ramsey algebras from old? 

Ultra-products based on non-principal ultra-filters?  Elementarily 

extending a Ramsey algebra    ℱ  in its natural language, ℒℱ?  

 

We are just about to embark on a study of these constructions and 

we cordially invite collaborators to join us in our quest.  

 

4. Final Remark  

 

The research described above is part of the author's doctoral work 

done under the supervision of Wen Chean at University Sains 

Malaysia. There are still many elementary open problems in the study 

of Ramsey algebras and we believe that the Iranian logic community 

will find it worthwhile to work on some of them. The author would 

like to invite the interested reader to participate in a collaborative 

work in attacking the problems mentioned as well as suggesting 

valuable questions to pursue.  
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ADDITIONAL SET THEORETIC ASSUMPTIONS 
AND TWISTED SUMS OF BANACH SPACES 

 
Claudia Correa 

 
In this paper, we discuss the role played by additional set-theoretic 

assumptions in the investigation of the existence of non-trivial twisted 

sums of    and spaces of continuous functions on nonmetrizable 

compact Hausdorff spaces.  

 

1. History and Background of the Problem 

 

In these notes we analyze the role played by some additional set-

theoretic assumptions in the study of a classical problem in Banach 

space theory. This problem is related to the existence of nontrivial 

twisted sums of Banach spaces. We recall some basic definitions and 

facts.  

 

Definition 1.1. Let   and   be Banach spaces. A twisted sum of   and 

  is an exact sequence in the category of Banach spaces, i.e. it is an 

exact sequence of the form:  

 

            
 

Where   is a Banach space and the maps, are bounded linear 

operators. This twisted sum is said to be trivial if the sequence splits, 

i.e. if the image of the map     is complemented in  .  

 

For a nice discussion on exact sequences of Banach spaces, see [8, 

Chapter I]. Given Banach spaces   and  , note that the direct sum of 

  and   provides a twisted sum of   and  . More precisely:  

 

   
  
      

  
→     
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Is a twisted sum, where the direct sum is endowed with a product 

norm, the map    is the first inclusion and    is the second projection. 

It is clear that this twisted sum is trivial. At this point one might 

wonder about the existence of nontrivial twisted sums of Banach 

spaces. Unlike the category of vector spaces, in which every twisted 

sum is trivial, in the category of Banach spaces there are examples of 

nontrivial twisted sums. A classical example is provided by an old 

result of Phillips [19] which states that the space    of real sequences 

converging to zero is not complemented in   , the space of bounded 

real sequences. Therefore, the following twisted sum is nontrivial:  

 

            ⁄     
 

Where the arrows are the inclusion and the quotient map. However 

there are pairs of Banach spaces that admit only trivial twisted sums. 

Interesting examples of this phenomenon are consequences of the 

classical theorem of Sobcyk [20], that states that    is complemented 

in every separable super-space; more precisely, every isomorphic copy 

of    inside a separable Banach space is complemented. Since 

separability is a three space property [8], it follows that if   is a 

separable Banach space, then every twisted sum of    and   is trivial.  

 

In these notes we are interested in the converse of this last 

implication. In other words: If   is a Banach space such that every 

twisted sum of    and   is trivial, then   must be separable? This 

question is easily answered negatively since there are non-separable 

projective Banach spaces; namely, the space       for any 

uncountable set Γ [8, Lemma 1.4.a]. However this question becomes 

interesting when we restrict ourselves to the class of      spaces. 

Here      denotes the Banach space of continuous real-valued 

functions defined on a compact Hausdorff space  , endowed with the 

supremum norm. Recall that      is separable if and only if   is 

metrizable. Therefore Sobczyk's Theorem implies that if   is a 

compact metrizable space, then every twisted sum of    and      is 

trivial. In this context, the converse we are discussing can be phrased 

as the following question. 
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Question 1. Is there a compact Hausdorff nonmetrizable space K such 

that every twisted sum of    and      is trivial? 

 

This question was first stated in the papers [3, 4]. Until last year, 

there were few results related to this problem. They were summarized 

in [7, proposition 2], namely we have the following proposition. 

  

Proposition 1.2. Let K be a compact Hausdorff space. There exists a 

nontrivial twisted sum of    and      under any of the following 

assumptions: 

 

(1) K is a nonmetrizable Eberlein compact space; 

 

(2) K is a Valdivia compact space which does not satisfy the countable 

chain condition (ccc); 

 

(3) The weight of  , denoted by     , is equal to    and the dual 

space of      is not weak-separable; 

 

(4)   has the extension property ([10]) and it does not have ccc; 

 

(5)      contains an isomorphic copy of    ; in particular, it is the 

case if   is infinite and extremally disconnected.  

 

In a recent series of papers [7, 11], this problem was extensively 

studied and great progress was extensively studied and great progress 

was achieved towards its solution. In these works the importance of 

additional set-theoretic assumptions in the understanding of Question 

1 became clear. Finally, in [18] the first consistent examples of 

compact Hausdorff nonmetrizable spaces   such that    cannot be 

nontrivially twisted with      were given. As we will discuss in 

section 3, thanks to the result of [7] and [11] the existence of 

nontrivial twisted sums of    and     , for some of the spaces   

given by Marciszewski and Plebanek in [18], are independent of the 

axioms of ZFC. The additional set-theoretic assumptions used in those 

works are the Continuum hypothesis and Martin's axiom. We observe 

that the existence, in ZFC, of a compact Hausdorff nonmetrizable 
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space   such that    cannot be nontrivially twisted with      is still 

an open problem. In section 3, we discuss the results obtained in [7], 

[11], and [18], and we give more details about those obtained by 

myself and D. V. Tausk in [11]. In the final section, we describe the 

ongoing investigation of some open problems related to Question 1 

and the progress achieved towards their solutions in [12], where we 

worked assuming the Diamond axiom. In section 2, we present a brief 

introduction to the additional set-theoretic assumptions used in the 

works mentioned above.  

    

2. Continuum Hypothesis, Diamond Principle and Martin's 

Axiom 

 

The Continuum hypothesis (CH) was born in the early history of 

modern set theory; actually CH stimulated the development of this 

theory. It all began with G. Cantor's investigation of different kinds of 

infinities [5]. Cantor showed that there is no one-to-one 

correspondence between the set of natural numbers and the set of real 

numbers. In other words, using the idea that the existence of a one-to-

one correspondence between two sets expresses the notion of having 

the same number of elements, Cantor showed that there are strictly 

more real than natural numbers. In this context, he started 

investigating the existence of a set with (strictly) more elements than 

the natural numbers and (strictly) less elements than the real numbers. 

This investigation led to the modern formulation of CH. We denote by 

  the first infinite ordinal, by    the first uncountable ordinal and by 

  the cardinality of the real numbers, also known as the cardinality of 

the continuum. The continuum hypothesis is the following statement: 

there is no cardinal number strictly between   and  , i.e.     . 

Cantor was never able to prove or disprove CH. It was only with the 

works of  . Gödel [13] and P. Cohen [9] that we were able to 

understand the status of CH regarding the axiomatic set-theory we use 

to do modern mathematics. Those mathematicians showed that CH is 

independent of ZFC, i.e. both CH and its negation are consistent with 

ZFC. Therefore, Cantor would never be able to prove or disprove CH, 

using the axioms of ZFC.  
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Now we turn our attentions to a classical problem in set theory that 

motivated the next axioms we want to discuss here: Diamond axiom 

and Martin's axiom. In this paper [5], Cantor characterized the 

canonical order of the real numbers; namely, he proved that every 

nonempty totally ordered set with no endpoints that is connected and 

separable, when endowed with the order topology, is order-isomorphic 

to the real line. The solution problem asks if we can replace separable 

with ccc in the above statement. More precisely, the Souslin problem 

is the following question: If   is a nonempty totally ordered set 

without endpoints which is connected and satisfies ccc, when 

endowed with the order topology, then   is order-isomorphic to the 

real line?  

 

The Souslin hypothesis (SH) is the statement that the Souslin 

problem has positive answer. The first appearance of Souslin problem 

was in an early volume of Fundamenta Mathematicae in 1920 as part 

of a list of open problems and it was attributed to Mikhail Souslin. 

The first great breakthrough on the investigation of SH happened 

when S. Tennenbaum [22] showed the relative consistency of the 

negation of SH with ZFC. Later, R. Jensen [14] gave another proof of 

the consistency of the negation of SH. Jensen isolated an interesting 

combinatorial principle (consistent with ZFC) that implies the 

negation of SH, this principle is called the Diamond Axiom    . 
Finally, in 1971, R. Solovay and Tennenbaum established the 

consistency of SH [21]. Martin's axiom (MA) was then isolated by T. 

Martin from this work of Solovay and Tennenbaum.  

 

In what follows we discuss briefly the statement of   and of MA. 

We start with  . In order to understand this combinatorial principle, 

we need to recall some basic concepts. This axiom is related to, in 

some sense, big subsets of    is said to be a club if it is closed and 

unbounded in   , where    is endowed with the canonical order 

topology; we say that is stationary if it intersects every club.  

 

Definition 2.1. Let    be a set. 
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(1) An              of I, where α is an ordinal number, is an 

increasing family (  )   
 of subsets of I such that         . This 

filtration of I is said to be continuous if, for every limit ordinal    , 

we have           . 

 

(2)  Given an   -filtration of  , a diamond family for this filtration 

is a family    
      

 with each   
  a subset of    and such that given 

any subset   of  , the set              
   is stationary. 

 

The axiom   is the statement that there exists a diamond family for 

every continuous   -filtration         
 of a set   such that each    is 

countable. It is easy to see that   is equivalent to the statement that 

there exists a diamond family for the canonical   -filtration of the set 

   , i.e. with     , for every     . Moreover, since there exist    

disjoint stationary subsets of    [17, Chapter II, Corollary 6.12], we 

have the version of   which requires the existence of a diamond 

family only when the set I is countable is equivalent to CH. 

  

We finish this section by discussing a bit about MA. In order to 

state Martin's axiom, we need to introduce some concepts regarding 

partial orders. Let       be a partial order. A subset   of   is called 

dense in   if given     there exists     with    . Two 

elements p and q of   are said compatible if there exists     with 

    and    .  

 

If p and q are not compatible, we say that they are incompatible. 

An antichain of   is a subset of   with the property that any two 

distinct elements are incompatible; a partial order       is said to 

satisfy the countable chain condition (ccc) if every antichain of   is 

countable. Since MA assure the existence of some filters on partial 

orders satisfying ccc, lets define those important objects.  
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Definition 2.2. A nonempty subset   of   is said to be a filter if it 

satisfies the following properties:  

 

- If   and   belong to  , then there exists     with     and    , 

i.e. each pair of elements of   are compatible and this fact is testified 

by some element of  ; 

 

- If     and     satisfy    , then    . 

 

Now we can state MA. For each infinite cardinal  ,       is the 

following statements: Let       be a nonempty partial order and   be 

a family of dense subsets of  . If   satisfies ccc and the cardinality of 

  is at most  , then there exists a filter in   that intersects every 

element of  . Finally, MA is the statement that       holds for 

     . Since       is a theorem of ZFC and       is false [17, 

Lemma 2.6], we have that MA is interesting only if we assume the 

negation of CH.  

 

3. Consistency and Independence Results 

 

The class of nonmetrizable compact Hausdorff spaces contains 

dramatically distinct subclasses of spaces: we have classes that are 

"close" to the class of metrizable spaces, in the sense that their 

elements have many properties implied by metrizability and we have 

classes that are "far" from the class of metrizable spaces, i.e. their 

elements have little in common with the metrizable ones. For instance, 

with respect to the sequential properties, the class of Corson compact 

is close to the metrizable ones. In fact, every Corson compact space is 

a Frechét-Urysohn space [15, Lemma 1.6 (ii)]. On the other hand, the 

extremally disconnected compact spaces are completely different from 

the metrizable ones: they have no nontrivial convergent sequences [2, 

Theorem 18]. In light of Sobczyk's Theorem, it is reasonable to 

believe that if there exists a nonmetrizable compact Hausdorff space K 

such that    can not be nontrivially twisted with     , then it will 

belong to classes close to the class of metrizable compact spaces. 

Having those considerations in mind, D.V. Tausk and myself decided 

to investigate the twisted sums of    and     , for   belonging to the 
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class of Corson compact spaces and more generally, its superclass of 

Valdivia compacta. To discuss our results, we start by recalling some 

standard definitions and well-known facts. Given an index set  , we 

write                                , where the support sup 

  of   is defined by                   .  
 

Definition 3.1. Given a compact Hausdorff space  , we call A a  -

subset of   if there exists an index set I and a continuous injection 

       such that              The space   is called a Valdivia 

compactum if it admits a dense  -subset and it is called a Corson 

compactum if   is a  -subset  itself.  

 

It is clear that every compact metric space is Corson and that every 

Corson space is Valdivia (for an amazing survey on Corson and 

Valdivia compacta, see [15]). In [11], we developed a technique for 

constructing nontrivial twisted sums of    and certain nonseparable 

Banach spaces, using the existence of interesting biorthogonal 

systems. Using these techniques, we were able to solve the problem 

for Corson compacta assuming CH.  

 

Theorem 3.2.  If   is a Corson compact space with weight greater or 

equal to  , then there exists a nontrivial twisted sum of    and     . 
In particular, under CH, there exists a nontrivial twisted sum of     

and     , for every nonmetrizable Corson compact space  .  

 

Proof. See [11, Theorem 3.1]. □ 

       

It is known that, under MA and the negation of CH, every ccc 

Corson compactum is metrizable [1]. Having in mind proposition 1.2 

item (2), we have that, under MA and the negation of CH, there exists 

a nontrivial twisted sum of    and     , for every nonmetrizable 

Corson compact space K. Therefore it follows from theorem 3.2 that, 

under MA, there exists a nontrivial twisted sum of    and     , for 

every nonmetrizable Corson compactum K. In this context, the 

following question remains open.  
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Question 2. Does it hold, in ZFC, that there exists a nontrivial twisted 

sum of    and     , for every nonmetrizable Corson compact  ?   

 

The general Valdivia case, under CH, remains open, but many 

results were obtained in [11]. They are summarized in the next 

theorems. Recall that given a point   of a topological space  , we 

define the weight of   in   by:  

                          

                                            .   

 

Theorem 3.3. Let   be a Valdivia compact space admitting a    point 

  with         . Then there exists a nontrivial twisted sum of     

and     . In particular, under CH, if   is a valdivia compact space 

admitting a    point with no second countable neighborhoods, then 

there exists a nontrivial twisted sum of    and     .  
 

Theorem 3.4. Assume CH. Let   be a Valdivia compact space 

admitting a dense  -subset  , such that some points of     is the 

limit of a nontrivial sequence in  . Then there exists a nontrivial 

twisted sum of    and     .  
 

Regarding twisted sums of    and spaces of continuous functions, 

a particular family of Valdivia compact spaces was recently shown to 

be special; namely the spaces   . In [11], Tausk and myself presented 

the following result.  

 

Theorem 3.5. If   is a cardinal number with    , then there exists a 

nontrivial sum of     and      . 
 

Proof. See [11, Corollary 2.10].                                                                                             

 

Surprisingly, Marciszewski and Plebanek showed that, given a 

cardinal number    ,          holds, then every twisted sum of    

and       is trivial [18, Corollary 5.2]. In particular, under MA and 

the negation of CH, if   is a cardinal number satisfying    , then 

every twisted sum of    and       is trivial. This answers consistently 

Question 1. Note that, under CH, theorem 3.5 states that there exists a 
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nontrivial twisted sum of    and      , for every uncountable 

cardinal  . Therefore the existence of nontrivial twisted sums of     

and        is independent of the axioms of ZFC. The problem of 

determining if Question 1 can be answered in ZFC remains open.  

 

Question 3. Is there, in ZFC, a compact Hausdorff nonmetrizable 

space   such that every twisted sum of    and      is trivial?   

 

To finish this section, we would like to tell the reader about the 

results of [7]. In this work, Castillo showed that, assuming CH, if   is 

a nonmetrizable compact hausdorff space with finite Cantor-

Bendixson height, then there exists a nontrivial twisted sum of    and 

     [7, Theorem 1].  

 

It is worth commenting that, unlike the results in [11], where the 

nontrivial twisted sums were constructed, Castillo did not construct 

his nontrivial twisted sums; their existence is established by counting 

arguments (see [7, Lemma 2]). Interestingly, Plebanek and 

Marciszewski showed that, under      , if   is a separable scattered 

space of height 3 and weight  , then every twisted sum of     and 

     is trivial [18, Theorem 9.7]. 

 

4. Towards the answer to question 3 

 

It follows from the discussion in Section 3 that Question 3 can be 

rephrased as follows.  

 

Question 4. Is there an additional consistent set-theoretic assumption 

that assure the existence of nontrivial twisted sums of    and     , 
for every nonmetrizable compact Hausdorff space  ?  

 

Since the first examples of nonmetrizable compact Hausdorff 

spaces such that    cannot be nontrivially twisted with their spaces of 

continuous functions were given assuming MA and the negation of 

CH, one might wonder if under CH, there exists a nontrivial twisted 

sum of    and     , for every nonmetrizable compact Hausdorff 

space K. Having this consideration in mind and continuing the work of 
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[11], D. Tausk and myself are currently investigating the following 

question.  

 

Question 5. Is it true that, under CH, there exists a nontrivial twisted 

sum of    and     , for every nonmetrizable Valdivia compactum?  

 

The techniques developed in [11] provided nontrivial twisted sums 

of    and     , for a huge class of Valdivia compact spaces  . Note 

that Theorems 3.3 and 3.4 do not solve the problem under CH, if   is 

a nonempty Valdivia compactum satisfying all the following 

properties:  

 

(1)   satisfies ccc;  

 

(2)   does not admit a    point;  

 

(3)   does not admit a nontrivial convergent sequence in the 

complement of a dense  -subset. 

 

Note that the case when   does not satisfy ccc is handled by 

Proposition 1.2(2). Finding examples of nonempty Valdivia compact 

spaces with no    points and no nontrivial convergent sequences in 

the complement of a dense  -subset is not a trivial task, since the 

absence of    points tends to make the complement of dense  -

subsets "large" (see, for instance [15,Theorem 3.3] for a more precise 

statement).  

 

In [11, Proposition 4.7], it was shown that the path space of a 

certain tree T, endowed with the product topology of   , provides 

such an example. However, using this topology it is not possible to 

have a nonempty path space with no    points and ccc. In [12], D. 

Tausk and myself constructed an example of a nonempty Valdivia 

compact space satisfying Properties (1), (2) and (3) described above. 

This construction is done under  . This space, given in [12, Theorem 

4.1], is the path space of a tree, endowed with an intricate compact 

Hausdorff topology. In what follows, we describe briefly the tools 

used in [12].  
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Recall that a tree is a partially ordered set       such that, for all 

   , the set                  is well-ordered. A subset   of   

is called an initial part of T if        , for all    ; a chain if it is 

totally ordered; an anti-chain if any two distinct elements of   are 

incomparable; a path if it is both a chain and an initial part of  ; the 

path space of a tree is the set of its paths. We say that   satisfies the 

countable chain condition (ccc) if every anti-chain in   is countable. 

At this point, the reader must be wondering: what is the relationship 

between trees and Valdivia compact spaces? It is a good question that 

is answered by the following facts: 

 

- Kubiś and Michalewski established in [16] a correspondence 

between Valdivia compact spaces with weight at most    and certain 

inverse limits of compact metric spaces [12, Theorem 2.9]; 

 

- We established a correspondence between those inverse limits and 

certain inverse limits of path spaces of trees [12, Proposition 3.3]. 

 

Therefore, combining those two correspondence, we obtain a 

characterization of Valdivia compact spaces with weight at most    in 

terms of trees with some additional structures and suitable topologies 

on their path spaces [12, Theorem 3.4].  

 

This characterization allows one to fine-tune the structure of a 

Valdivia compactum by manipulating the properties of the 

corresponding tree. We observe that axiom   is used in the 

construction of our tree in a similar way that is used to construct a 

Soulsin tree. Recall that a Soulsin tree is a tree with height   , 

satisfying ccc and admitting only countable paths (see [17, Chapter II, 

4] to understand the relationship between Souslin trees and the Souslin  

hypothesis).  
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ŁUKASIEWICZ, JASKOWSKI AND NATURAL 

DEDUCTION: CURRY-HOWARD FOR CL
1
 

 
Adrian Rezus 

 
§0. Introduction 

                                                 

The present notes consist of a thorough revision of a draft dated 

Nijmegen, October 9, 2015, based on previous work.  

 

The bulk of the historical information on the early Polish logic 

school (Łukasiewicz, Jaśkowski, Tarski et al.) is based on research 

done as a graduate student at the University of Bucharest (1972-1977), 

while busy with a very different subject, abandoned since. My specific 

interest in 'Polish logic' has been first caused and stimulated by several 

Romanian mathematicians and philosophers, including some of my 

teachers and friends.  

 

On the other hand, most of the technical details - on λ-calculus - 

appearing, mainly, in §7, go back to an equally old research project 

bearing the title Subsystems of type-free and typed λ-calculus, 

submitted to the Chair of Dirk van Dalen [Logic and Foundations of 

Mathematics] at the University of Utrecht, in 1978. The original 

project, actually supervised by Henk Barendregt, was focused on the 

strict λ-calculi of Alonzo Church (especially Church's 'ordinal logic', 

appearing in his Princeton Lectures of 1935-1936), as well as on the 

proof theory of relevance logics - Anderson, Belnap et al. (1975, 

1992) - , and concerned only incidentally the proof theory of classical 

logic, as such. Cf. Rezuş (1981, 1982).  

 

The subject has been revisited on several occasions since: first in 

the Chair of Nicolaas G. de Bruijn, at the University of Technology of 

Eindhoven (1982) - where I was involved in research on 

AUTOMATH -, and next, after 1983, at the University of Nijmegen, 

                                                           
1. Classical Logic 
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with support from NWO [formerly ZWO], the Dutch National Science 

Foundation. 

 

The earliest public records (seminars, lectures, conferences, etc.), 

concerning explicitly what I was brought to call 'the witness theory of 

classical logic', are dated - as far as I can remember - after the mid-

eighties (Canberra ACT 1986, Paris 1987, Nijmegen 1988, Karlsruhe 

1990, etc.). See also Rezuş (1983, 1990, 1991, 1993).  

 

As to the very last revisions (2016-2017), I am grateful to J. Roger 

Hindley (Swansea University, Wales, UK) for stylistic remarks and 

useful suggestions concerning previous drafts of these notes.  

In view of my title, I have adopted, throughout in what follows, 

the Łukasiewicz notational habits. 

 

§1. Sometime during 1926, while still an undergraduate 

mathematics student at the Warsaw University, Stanisław Jaśkowski 

(1906-1965) presented, in the local (i.e. Warsaw) Logic Seminar of his 

teacher, Jan Łukasiewicz (1878-1956), a   natural deduction   

formulation of classical (two-valued) propositional (including 

propositional quantifiers), first and second-order logic.  

 

Let us pause, first, on historico-bibliographical details. 

Apparently, the work was done at the instigation of Jan Łukasiewicz 
1
. 

As to terminology, the phrase   natural deduction   (German:  'nat rliche 

Schliessen'), still in common use in logic today, appeared in print first 

in Gentzen (1934-1935), although the idea was already clear in the 

motivation of Jaśkowski's research: he meant, on the authority of his 

teacher, to design a logic of rules (a  'Regellogick', so to speak), close 

to the   natural   mathematical reasoning, as opposed to the  'Satzlogik' 

of Łukasiewicz himself, i.e. an axiomatic presentation – as in the 

lectures of Łukasiewicz (1929) – in the footsteps of Ferege (1879), 

                                                           
1. Stanisław Jaśkowski graduated from high-school at eighteen, in 1924, so he was 

about twenty, by then.  
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Peirce (1885), Russell (1906), and Whitehead   Russell's   Principia 

Mathematica   (1910-1913)
1
.  

 

The phrase, 'deduction theory ' [Polish:  'teorja dedukcji'] was 

initially, Łukasiewicz's own term for 'propositional logic', (including 

possibly, propositional and / or first- and second-order quantifiers). 

Cf. the introductory lines and other occasional side-remarks appearing 

in Jaśkowski (1934)
2
.   

                                                           
1. The contrast 'Satz-' vs 'Regellogik' - roughly: 'sentence / proposition logic' [sic] vs 

'rule logic' -, current in the German logico-philosophical literature, mainly after 

Gentzen, goes back to Frege (1893) and is meant to stress a difference of approach: 

pace Frege, the pioneers were mainly concerned with the formal study of 

propositions and /or propositional schemes, as expressed by formulas, and the 

properties thereof (like, e.g., provability in a given 'logistic' system ['Satzsystem'], 

etc.), while Frege and, subsequently, Gentzen paid also attention to the rules of 

inference and to their properties (like, e.g., derivability and / or admissibility in a 

given system [of rules]). With a suggestive term, we may refer to the former 

approach - and to its defenders / practitioners - as Formularian (with implicit 

allusion to Peano's various editions of his 'Formulaires', mere collections of 

[formalized] formulas). Roughly speaking, for a Formularian, a logic is a set of 

provable formulas, and a provable formula [`thesis' or, even, 'theorem'] is, at best, 

the codification of a [bunch of] rule[s] of inference. The Formularian approach has 

been effective in the early development of 'algebraic logic' and, later, in model 

theory, but is, conceptually speaking, rather inadvertent, since two distinct 'logics' 

may share exactly the same set of 'tautologies' [provable formulas], while still 

differing as to the corresponding derivable rules. The alternative rule-oriented 

approach, suggested by Łukasiewicz in his Warsaw Seminar (1926), was motivated 

in terms of 'naturalism', by reference to the actual mathematical reasoning and this 

was, apparently, also the case for Gentzen, a bit later. Technically speaking, the 

distinction between rule-admissibility [closure of a set of propositions / formulas 

under a given rule of inference] and explicit [rule-] derivability, already implicit in 

Gentzen (1934-1935), comes rather late to the attention of the logical theorists; to 

my knowledge, it is due to Paul Lorenzen (1915-1994) - cf. Lorenzen (1955) - and to 

Haskell B. Curry (1900-1982), slightly later. The first explicit counterexample to the 

(Formularian) tenet that a logic = a set of provable formulas, is due to Henry Hiż 

(circa 1957-1958), who described a [three-valued] 'logic', H3 say, containing all 

classical, two valued tautologies as provable formulas, where not all classically valid 

rules of inference are derivable. See Hiż (1957, 1958, 1959) and, possibly, Nowak 

(1992), for a model-theoretical account of H3.  
 

2. For bio-bibliographical and historical details on Jaśkowski and his system(s) 

based on 'supposition rules' [Polish: 'oparta na dyrektywach załozeniowych'], i.e., → 
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As to publication matters, Jaśkowski's results were promptly 

announced as Jaśkowski (1927), at the First Congress of the Polish 

Mathematicians, held on Lvov, September 7-10, 1927. See e.g. the 

Congress [PPZM] proceeding (1929) and specifically, the references 

of Lindenbaum (1927). Due to circumstances unknown to me (as well 

as to other, better informed people, apparently), the final paper 

appeared actually in print only eight years later (in a projected logic 

collection edited by Jan Łukasiewicz himself, later to become an 

international logic journal), as Jaśkowski (1934), more or less 

simultaneously with Gerhard Gentzen's Göttingen 

Inauguraldissertation, Gentzen (1934-1935).  

 

Before going into the proper details of the subject announced in 

the title, a few more technical and historical remarks on the material 

available in print – or otherwise – to Jaśkowski, around 1926, are in 

order.  

 

Modern logic – also called 'mathematical' or 'symbolic', was (re) 

born by the end of the XIX-th century (around 1879, in print with an 

entertaining sequel, in 1893), in two instalments, authored by Gottlobe 

Frege, viz. Frege (1897) [BS] and Frege (1893) [GGA:1]. There was 

an intermediate episode, due to Charles S. Peirce (1885) – that Frege 

ignored – equally worth noting which, although sketchy, was in some 

respects, conceptually superior to Frege's BS-account. Both Frege and 

Peirce had a venerable predecessor more than twenty one centuries 

before they were born, in the work of Chrysippus of Sol[o]i (this was 

                                                                                                                                        
← proper / general rules of inference, using 'assumptions' in their premises, viz., 

entailments, see, e.g.,Dubikajtis (1967, 1975) - a reliable informant on the logical 

whereabouts of Stanis law Jaśkowski, Lech Dubikajtis (1927-2014) was a former 

PhD student and a research assistant of Jaśkowski at the Warsaw National Institute 

for Mathematical Sciences (currently, the Institute of Mathematics of the Polish 

Academy of Sciences) -, as well as Kotas   Pieczkowski (1967), Or łowska (1975), 

Indrzejczak (1998, 2016), Piętka (2008), and, possibly, the textbook Borkowski   S 

łupecki (1963). On the subsequent history of 'natural deduction' - a comedy of 

conceptual errors, indeed -, see, e.g., Pelletier (1999, 2000), and Hazen & Pelletier 

(2012, 2014). General information on the 'Lvov-Warsaw school' can be found in 

Woleński (1985, 2015), Jadacki (2006), Wybraniec-Skardowska (2009), etc. 
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an obscure place in Cylicia Campestris, nowadays in modern Turkey), 

a Phoenician emigrant to Athenes, the father of Stoic logic and the 

grand-father of [classical] logic tout court. The latter (historical) fact 

was first noted by Jan Łukasiewicz, sometime during the early 1920
1
.  

A less known (historical) fact is that Frege came out with two 

'logics', not with a single one: a Satzlogik (2879), and a Regellogik 

(1893). Both were 'axiomatic' by modern standards. The latter one 

meant to be closer to actual 'mathematical thinking' (a kind of formal 

counterpart of ' natural deduction', as occurring in mathematical texts), 

and was vastly anticipating among other things, Gentzen (1934-1935), 

for instance.  

 

The other relevant (historical) fact is that neither Gentzen nor any 

other Göttinger – David Hilbert (1862-1943) or Paul Hertz (1880-

1940), for that matter
2
 – had ever read Frege's GGA (1893) [sic].  

 

In this matter, I cannot, however, speak for the Lvov-Warsaw 

Poles - those active in logic before cca 1935 - because we lack the 

right kind of (historical) documentation. Both Łukasiewicz (1929) and 

Jaśkowski (1934) mention only Frege's axiomatic system of BS, 

while, curiously enough, the young Alfred Tajtelbaum [aka Tarski] 

(1901-1983) does not refer to Frege's 'logics' at all
3
. 

 

On the other hand, the main trouble with Frege (1879, 1893) was 

in the fact he did not recognize the general concept of a 'rule of 

inference'. Specifically, with [material] implication, [classical] 

negation and the [classical] universal quantifier as primitives, he only 

                                                           
1. Circa 1923. See the final outcome in Łukasiewicz (1934) and, possibly, Rezuş 

(2007, rev. 2016), for the main claim.  
 

2. On the authority of Paul Bernays (1888-1977), Gentzen borrowed his 'structural' 

rules from Hertz, a former physics student of Hilbert in Göttingen. Cf. Rezuş (2009, 

rev. 2016).  
 

3. See, e.g.  the Bibliography and Index of Names and Persons of the collection 

Tarski (1956). 
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acknowledged 'flat' rules (more or less like the algebraic operations), 

of the form:  

 

                       , 

 

Rejecting, implicitly, the (old-fashioned) idea of entailment (= 

finite sequence of propositions, with exactly one being tagged qua 

'conclusion'): 

 

                    , 

 

As a legitimate - and otherwise essential - logic concept
1
.  

 

The young Bertrand Russell (1872-1970) - the only (more or less 

competent) person who did actually read Frege (1893) in the epoch
2
 - 

was less interested in such absconse distinctions
3
, so he missed the 

point, as well, and stuck to axiomatic, in the shadow of Frege (1879) 

and Peirce (1885)
4
.  

 

As another aside, I was, so far, unable to date exactly the event as 

such, in the moderns, viz. the identification of the concept of a general 

rule of inference
5
. The earliest date I am able to quote is 1921, when 

Alfred Tarski (Leśniewski's only PhD student) noticed the so-called 

                                                           
1. In this respect, Frege was about two millennia behind Chrysippus (and, even, 

Aristotle, in a way). On this, see, e.g., Rezuş (2007, 2009, rev. 2016).  
 

2. As I could gather from the newest Russell expertise, this happened sometime 

around 1902-1903.  
 

3. As noticed, in passing, by Kurt Gödel, Russell was even later quite confused 

about the general concept of a logical rule of inference.  
 

4. Although he did not acknowledge the latter source. Cf. Russell (1906). 

 

5. One should perhaps read, once more, carefully, the rather vast output of Stanisław 

Leśniewski, on this. Cf. the collection Leśniewski 1992. 
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'Deduction Theorem' (DT)
1
, i.e., the implication-introduction rule of 

Gentzen (1934-1935), an obvious case of 'non-flat' inferential rule, 

with an entailment (including 'assumptions') as a premise: 

 

                                  
 

Certainly, Łukasiewicz was aware of such details, if not in 1921, 

at least sometime before 1926, when he assigned his [very] young 

student (Jaśkowski) the home-work leading to Jaśkowski (1927, 

1934). Anyway, the implication int-elim rules (the 'Deduction 

Theorem' and the famous modus ponens / detachment rule) appear 

explicitly in Jaśkowski's early home-work, and so, a fortiori, in 

Łukasiewicz's Warsaw Seminar, sometime during 1926
2
.  

 

Whence a question: 'Why hasn't Jan Łukasiewicz solved the 

problem [the one assigned to young Jaśkowski] himself - sometime 

before 1926 – and presented the outcome is his famous lectures 

Łukasiewicz (1929)?' Because he had at hand the (conceptual and 

technical) means to do it, anyway. Which is what I mean to show next. 

In order to do this, in proper terms, I need a conceptual revision of the 

received views on proving (in logic) and some appropriate notation 

and terminology. 

  

§2. Rules of inference as witness-operators. A typical case of the 'flat' 

rule ( ) above is the modus ponens or the detachment rule, in logics 

with implication [here, C], either primitive or defined: 

 

                                 
 

                                                           
1. See Axiom 8* in Tarski (1930), and the footnote on page 32, in the collection 

Tarski (1956), for references. Some authors used to credit Herbrand with the 

discovery. However bright, Jacques Herbrand (1908-1931) was a teenager, just 13 

years old, in 1921, so it is unlikely he spotted errors in Frege's [German] texts 

nobody used to read by then, even in Germany! 

 

2. At a quantifier-free level, Jaśkowski had a third rule - of the same kind as (DT), 

actually -, yet a less inspired choice I will go into later on.  
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Now, in axiomatic presentations of a given logic (classical, two-

valued logic, for instance), the premises              of a 'flat' 

rule of the form ( ) are taken to hold 'unconditionally', without 

further assumptions, they are provable formulas (expressing 

propositions / propositional schemes), 'theorems' or 'theses' (in the 

jargon of the early Polish 'school'); alternatively, they are, 

semantically, true (or else two-valued 'tautologies', in the classical 

case). 

 

In fact, any particular axiomatic amounts to an inductive definition 

of the predicate 'provable' (expressed by notation  ) applying to 

formulas (expressing propositions or propositional schemes): the 

axioms are paradigmatically provable (the basis of the induction), 

while any (primitive) 'flat' rule of inference carries this property - 

provability - from premises to conclusion (inductive step). 

 

As long as we have only primitive rules of the form ( ) around, 

'proving axiomatically' amounts to a piece of algebraic notation: a 

'flat' primitive rule of inference with n premises (n > 0) looks like a 

usual algebraic nary operation
1
, whereupon a derivable rule of 

inference is just an explicit definition of an operation in terms of 

'primitive' operations (here, axioms and primitive rules of inference). 

 

'Operations on what?' one might wonder. A first - approximate – 

answer could be: 'On formulas.'
2
 A slightly better one would amount 

                                                           
1. In the limit case (n = 0), the axioms may be thought of as null-ary operations, if 

we want full generality.  
 

2. This was actually the case, historically speaking: the idea came first - exactly in 

these terms - to a later (Irish) student of Łukasiewicz, in the '(logical) Polish quarter' 

of Dublin, during the early fifties. [After the WWII, 'being unwilling to return to [...] 

Poland [...], Łukasiewicz looked for a post elsewhere. In February 1946 he received 

an offer to go to Ireland. On 4 March 1946 the Łukasiewiczes arrived in Dublin, 

where they were received by the Foreign Secretary and the Taoiseach Eamon de 

Valera. In autumn 1946 Łukasiewicz was appointed Professor of Mathematical 

Logic at the Royal Irish Academy (RIA), where he gave lectures at first once and 

then twice a week. Simons (2014)] See the references to the  -operator, the 

'condensed detachment' operator, of Carew A. Meredith, below, and, possibly the → 
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to an additional piece of formalism, to be justified, intuitively, as 

follows: 

 

Proving something - a proposition expressed by formula  , say – 

amounts to providing a reason - or 'grounds' - for  , or else, like in 

court, to displaying a witness a for  . Formal notation:      . 

 

With this minimal formal equipment, in axiomatic presentations, 

the axioms are to be witnessed by primitive constants (possibly 

parametric, in the case of axioms schemes), whence 'witnessing' a 'flat' 

rule of the form ( ) would amount to providing an operation 

(operator) [ and a piece of explicit formal notation           , such 

that 

 

                                                 
 

So, in particular, 'witnessing' a 'flat' rule like modus ponens, for 

instance, would consists of using a binary operation  , say, to the 

effect that 

 

                                       
 

Summing up, a 'flat' rule of inference is just an algebraic 

operation, in this view. Note, however, that, as long as we do not 

define explicitly the 'operations'  , we have only a witness notation, 

at most. In other words, in order to have a witness theory - as a formal 

counterpart of (axiomatic) proving - we must be able to characterize 

the witness operations first. Usually, we can do this, like in algebra, 

by equational conditions, expressing witnessor proof-isomorphisms. 

 

The general case is obtained from the 'flat' case by 

'parametrisation' so to speak, where the parameters are finite (possibly 

empty) sequences of formulas (expressing propositions, resp. 

                                                                                                                                        
← notes Meredith (1977) - by David Meredith, the American cousin of Carew, also 

a logician - for further historical details. 
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propositional schemes)     [            
]             

                         , called 'assumption contexts' 

(alternatively: witness-contexts or proof-contexts). Every premise of a 

general rule is thus an entailment of the form                , 
while the rule has a conclusion of the form      i.e., one has 

      

                                 
 

With 'witnessed' counterpart of the form 

 

                     ̂           ̂         ̂       
 

Where  ̂  [                      
]  the 'witnessed' counterpart of 

   (and analogously for  ̂ and  ) contains 'decorated - or typed - 

witness-variables', allowing us to manipulate the witness-contexts
1
. 

In particular, in the limit case, a null-premiss rule of inference is 

just an entailment (considered valid). Examples in point: 

 

                    , 

 

Or more generally, 

 

                                                   
             

                                                         
etc., and analogously for the witnessed variants: 

 

                            
 

Resp.  

                      ̂            ̂                       
      

                                                           
1. Besides, one must have additional rules, called 'structural rules', in the current 

proof theoretic terminology borrowed from Gentzen (1934-1935), that are rather 

trivial, and remain un-expressed, formally, in usual presentations of 'natural 

deduction' .  
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Here, in [  ], the witness b, appearing in the conclusion, must be 

of the form                  ,where the prefixes           
   are either empty (nil) or specific variable-binding operations, called 

'abstraction operators', acting on finite sequences 

 ⃗  [            
]         of pairwise distinct witness-variables) 

and the associated 'body'   . In each case, a witness variable is 

decorated (or 'typed') by an associated formula thereby witnessed 

'hypothetically'. 

 

Of course, if every  -prefix is empty, we have a 'flat' rule, the 

'degenerated' case. E.g., in particular, the most general forms of modus 

ponens, viewed as a rule of inference, should be 

 

                    ̂         ̂        ̂          
             ['Parametric']  

or 

                    ̂           ̂       ̂   ̂          
             ['Cumulative']. 

 

In general, however, a rule of inference can be arbitrarily complex, 

so that the identification 

 

         (General) rule of inference = witness operator 

 

Goes beyond the conventional views on 'algebraic operators'
1
. In order 

to Accommodate, formally, the terminology - and the notation - , one 

                                                           
1. The so-called 'abstraction-operators' - and, in general, the variable-binding 

mechanisms - are not welcome in (abstract) algebra, indeed. This on historical 

reasons, likely. Nicolaas G. de Bruijn observed once, in conversation, that 

abstraction-operators do not occur in pre-XIX-century mathematics. This explains, 

in a way, the initial lack of interest in such phenomena among algebraists. In recent 

times, when confronted incidentally with such cases - first-order quantifiers, for 

instance -, they made appeal to elaborated local solutions in order to cope with the 

problem. Paul Halmos and Alfred Tarski invented specific constructions - polyadic 

algebras, resp. cylindric algebras - in order to algebraize first-order logic with →  
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can use the idea of a generic arity (gen-arity, for short), viewed as a 

finite sequence of non-negative integers, to be associated to an 

arbitrary operator, taken in the new sense.  

 

In this setting, the algebraic [null-ary] constants would get gen-

arity nil [= the empty sequence], the usual n-ary algebraic operations 

would get gen-arity [0, ... , 0] (n times 0, n > 0), the n-adic 

abstractorswould get gen-arity [n] (n > 0), so that the monadic λ-

abstractor, as well as the usual quantifiers, for that matter, must have 

gen-arity [1], the dyadic abstractor split [∫], mentioned incidentally 

below, has gen-arity [2], and so on. In particular, the 'mixed' operators 

(gen-arity               ) can be handled as 'flat' (algebraic) n-

ary operations acting on   -adic abstractors              
 

In practice, however, we rarely, if ever, encounter complex rules 

corresponding to 'mixed' operators; we are normally confronted with 

'flat' (ordinary algebraic) operators or with n-adic abstractors with 

       (operators of gen-arity [1] or [2]), at most, so that, in the end, 

the talk about gen-arities amounts to a piece of empty generality
1
. 

  

                                                                                                                                        
← quantifiers, resp. quantifiers and equality. In more general situations, modelling 

abstraction operations in mathematical terms requires specific category theoretic 

methods and constructs that go far beyond the traditional algebraic way of thinking 

about 'operations' and 'operators'. Moreover, there are genuine phenomena, 

occurring frequently in computer science - like, e.g. the non-local control (typically, 

jumps), the side effects, or the so-called continuations - that can be easily described 

in terms of abstraction-operations, but whose behavior resist algebraisation, as 

understood in traditional terms. The (general) logical rules of inference fall within 

the same category.  
 

1. Like in the usual algebraic case, in fact, as we do not encounter 13-ary or 17-ary 

operations in current mathematical practice, either. In logic, an exception can be 

encountered in the usual presentation of intuitionistic propositional logic, where the 

so called or-elimination rule (case-analysis) is a witness operator of gen-arity 

[0,1,1], as well as in the case of Jaśkowski's rule _ (a witness-operator of gen-arity 

[1,1]) to be discussed below. 
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§3. Essentially the Łukasiewicz Warsaw Lectures of 1928-1929, 

Łukasiewicz (1929), contain a very detailed axiomatic presentation of 

 

      (1) [Classical] propositional logic, based on the signature [N,C] 

(classical negation and material implication, in Łukasiewicz 

notation)
1
, and 

 

      (2) A mild - yet very clean - version of the 'extended propositional 

[classical] logic', i.e., the [classical] propositional logic with 

propositional quantifiers, à la Peirce (1885), Russell (1906) and Tarski 

(doctoral diss., Warsaw 1923, under Leśniewski), or else Leśniewski's 

'protothetic', for that matter
2
. 

 

Now, except for a minor detail, the latter one is not more than the 

former, because we can define explicitly the [classical] propositional 

quantifiers in terms of [classical] connectives K [and], A [or] (in 

Łukasiewicz notation), and propositional constants v [verum] and f 

[falsum], anyway (just 'truth value quantifiers', as Nuel Benap Jr 

would have had them
3
). The 'minor detail' refers, here, to the fact that 

the primitive [N,C]- signature is not functionally complete: we cannot 

obtain the propositional constants v and f from [N,C] alone. This does 

not affect our discussion of (2) below, as the signature [N,C,Π], with 

Π for the universal propositional quantifier, is functionally complete 

and even redundant, since one can define f and N à la Peirce (1885) by 

f := Πp.p and N  := C f, resp.
4
 In an axiomatic quantifier-free setting 

- as in Łukasiewicz (1929), Chapter II – the absence of the 

                                                           
1. Completeness is shown in Łukasiewicz (1929), Chapter III, §22. Cf. also 

Łukasiewicz (1931).  
 

2. Specifically, Chapter IV of Łukasiewicz (1929) is based 'in great part' [see the 

Preface of the first edition] on Tarski's previous work. Cf. also Łukasiewicz   

Tarski (1930), §5. 

For Leśniewski, see now Leśniewski (1992).  
 

3. Cf., e.g., mutatis mutandis, Anderson & Belnap (1992) [2], §33.4. 

 

4. As actually done in Łukasiewicz (1929), Chapter IV, x24. 
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propositional constants might, however, affect the translation off the 

axioms in terms of rules of inference (and conversely). The point is 

that we need a primitive f [falsum] in order to express something as 

simple as the 'law of (non-) contradiction', for instance, in inferential 

(entailment-like) terms.
1
 By adjoining a falsum-constant f to [N,C], 

the Łukasiewicz original axiom system is, however, incomplete as it 

stands. We cannot even prove, from the Łukasiewicz axioms, the 

'thesis'         , for instance.
2
 

 

Recall that the Łukasiewicz (1929) quantifier-free axioms, with 

modus ponens and substitution as only 'rules of inference', are (in 

Łukasiewicz – 'Polish' - spelling): 

 

                                       
[transitivity of implication: 'suffxing'] - axiom in Peirce (1885) 

 

                             
[the consequentia mirabilis of Gerolamo Cardano (1570) or the Law 

of Clavius, viewed as a 'thesis'] 

 

                                
 [ex contradictione quodlibet, 'explosion']. 

 

To this team, we add, for reasons discussed above: 

 

                          
 

                                                           
1. The 'algebraic' alternative - which consists of [1] defining first a 'relative' falsum 

by           , say, and [2] proving next            , for any two fomulas 

       etc. - induces unnecessary formal complications. A similar remark applies to 

Jaśkowski's 'natural deduction' quantifier-free system, based originally on [N,C] 

alone. 

 

2. It turns out that all we need is just a single new axiom   v, for this purpose. For 

completeness, see, for instance, Wajsberg (1937), I, §5, resp. 1939, II, §2, and the 

remark (below) that ex falso quodlibet can be obtained from the Łukasiewicz axiom 

  O[p,q] : CpCNpq and a 'paradigmatic' proof of v, like  𝛀 : v. 
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§3.1. Proof-combinators. Taking CB, E and O - with the appropriate 

propositional parameters (here: [p,q,r,] [p], and [p,q], resp.) -, as well 

as 𝛀, in guise of primitive 'witnesses' for the corresponding axioms, 

detachment / modus ponens can be viewed as a binary (algebraic) 

operation  , from 'detachment' (to be defined properly - i.e., 

equationally - later on) acting on witnesses, to the effect that: 

 

( = modus ponens) if f is a witness for C   and a is a witness for  , 

then  fa is a witness for  . 

 

We write, for convenience,  f(a) = (f   a) :=   fa. This is to be 

understood modulo arbitrary uniform substitutions, with the proviso 

that one must take most general substitutions into account (here, 

substitutions are endomorphisms of the corresponding [free] algebra).
1
 

 

For the record, the formal grammar (for formulas, resp. witness 

terms [proof-terms or w-terms, for short]) is: 

 

Propositional variables  ::  p, q, r, ... 

 

Formulas  ::   ,   := p⎹ N ⎹  C   

 

W-variables  ::  x, y, z, ... 

 

W-terms  ::  a,b,c,d,e,f := x⎹  𝛀⎹ CB⎹ E⎹ O⎹  c a. 

 

Where   is a formula and a is a w-term, we write, as ever,   a :  , 

for the fact that a is a witness (actually, a w-term) for  . 

 

So, we have, in particular, derived rules (here, definable witness-

operators): 

                                                           
1. Technically speaking, the  -operator is the 'condensed detachment' operator of 

Carew A. Meredith (1904-1976). Notably, the Irishman attended Łukasiewicz's 

lectures in Dublin, during the early 1950. See, e.g., David Meredith's bio-

bibliographical note, Meredith (1977), and, possibly, Rezuş (1982, 2010), Kalman 

(1983), and Hindley & Meredith (1990), for details. 
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Examples, ignoring propositional parameters on witnesses, as well as 

explicit substitutions
1
: 

 

                               
     
                                             

    

                                   
      

                        
      

                        
   

                             
         

      … 

                    
                                              
 

and so on. Further, Łukasiewicz meticulously obtained 

 

                                                      –  
axiom in Frege BS (1856) 

 

        

                     
['assertion' or internalised modus ponens] 

                                                           
1. The latter can be uniquely restored (modulo alphabetic variants) by the Robinson 

unification algorithm. Cf. Rezuş (1982).  
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['the law of commutation'] - axiom in Frege BS, as well as in Peirce 

(1885) [Note by Łukasiewicz (cca 1925): superfluous in Frege BS, it 

can be already obtained from K and S.] 

 

                                         
 [transitivity of implication: 'prefixing'] 

 

                            
 ['the Law of Peirce'] - axiom in Peirce (1885) 

 

                             
 ['Hilbert' or 'contraction'] 

 

                                 
 ['Frege' or 'selfdistribution on the major'] - axiom in Frege BS 

 

                         
 ['law of double negation' (elim)] - axiom in Frege BS 

 

                        
['law of double negation' (intro)] - axiom in Frege BS 

 

         … 

 [46-49: 'the laws of transposition' (or 'contraposition')] 

 

                         
 

                                              
 

                         
 

                         
etc. 
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This amounts to a 'typed' (stratified, decorated) combinatory logic 

notation, where one manipulates formulas in guise of so-called 

principal type schemes.
1
 

 

Now, as Tarski should have known (in 1921), in presence of 

modus ponens, the Deduction Theorem (DT) - or implication-

introduction - can be obtained from K and S alone. This yields the λ-

calculus counterpart of the same story. 

 

§3.2. (DT) and the λ-abstraction-algorithm. I have argued at length 

elsewhere that Tarski must have been, likely, familiar with some form 

of (typed) λ-calculus - or (typed) combinatory logic or both - during 

the early 1920, knowledge that enabled him to prove some tricky 

axiomatizability results around 1925.
2
 

 

Indeed, there is, essentially, a single way of proving (DT): the 

proof amounts to a simple inductive argument. 

 

The reasoning can be repeated in any (propositional) logic - with 

substitution and modus ponens, as only primitive rules of inference - 

that contains the (witnessed) 'theses': 

 

                            and 

 

                                      
 

Note first that, in such cases, one has, as derived rules: 

 

                                                           
1. Cf. Hindley (1969, 1997), Hindley & Seldin (1986), and Hindley & Meredith 

(1990). As a matter of fact, here, one has a 'rigid' typing, à la Church and de Bruijn, 

instead. For the difference, see Hindley (1997), Barendregt et al. (2013) and the 

review Rezuş (2015). We could have had a (typed) combinator theory - a 

'combinatory logic' -, as well, but, since the equational constraints on the primitive 

combinators are rather non-transparent, I prefer to skip the details. Otherwise, they 

can be recovered from remarks following below. 

 

2. See, e.g, Rezuş (1982) and the discussion appearing by the end of Rezuş (2010).  
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            ̂       ̂                 and  

 

            ̂           ̂         ̂           
 

Where                      as well as the (witnessed) 'thesis': 

 

                        
 

[ignoring propositional parameters, the latter is available as S(K)(K)]. 

 

Suppose that we have obtained a proof b[x] of   from the 

assumption that we have a proof x of   (so that b[x] depends possibly 

on [x:]). Then (DT) states that we must have a proof            
               of C, that does not depend on the proof [x:], ceteris 

paribus.
1
 That is to say, formally, 

 

                ̂                    ̂                
 

For an appropriate assumption-context  ̂, as a parameter in the 

argument. 

 

The induction pays attention to the form ('structure') of b[x]. To 

save repetitions, set            . There are only three cases to 

examine: 

 

    

                                             
      

                                                         
                 
          

                            

                                                           
1. The ceteris paribus clause refers to the fact that the argument can be taken relative 

to a parameter      ̂                        
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                                           ̂             

            ̂                       ̂  ̂      1 

 
§3.3. An extended λ-calculus. As in (decorated / 'typed') λ-calculus, we 

can thus write (ignoring everywhere proof-context parametrisations): 

 

                                                  
 

On a par with the usual 'cut'-condition [modus ponens]: 

 

                                              
 

As one might already guess, this makes up the first step in a would 

be attempt meant to replace the Łukasiewicz axioms - i.e., the 

primitive combinator team {CB, E, O} - together with 𝛀, on the 

signature [f, N,C], by appropriate witness operators (rules of 

inference). 

Set now 

 

                                                       
 

The latter derived rule (definable witness-operator) is the 

consequentia mirabilis of Gerolamo Cardano (1501-1576) or the Rule 

of Clavius, viewed as a single-premiss rule of inference
2
. 

                                                           
1. This is the so-called 'bracket abstraction algorithm' obtained first in terms of 

combinators - and, rather late, in this form -, by Haskell B. Curry (in 1948-1949) 

and, independently, by Paul C. Rosenbloom (1950, 2005), that is about thirty years 

after Tarski. See also Rosser (1942, 1953) and Curry & Feys (1958), 6S.1, etc. One 

can improve on the last clause (3), by processing first the subcase a ≡ x :   ≡  ', 

while setting e:= f : C '  ≡ C  . 

  

2. Cf. Cardano (1570), Lib. V, Prop. 201, resp. Cardano (1663) 4, p. 579. For pater 

Clavius [Christophorus Clavius, aka Christoph Klau, SJ (1537-1612)], cf. Clavius 

(1611) 1.1, pp. 364-365 [comments ad Euclid Elementa IX.12], as well as 1.2, p. 11 

[comments ad Theodosius Sphaerica I.12]. See, also Rezuş (1991, rev. 1993), pp. 4, 

23, 46, and Bellissima & Pagli (1996) passim, for details. Notably, Łukasiewicz was 

familiar with the references above, as well as with the medieval anticipations of → 
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As announced before, we adjoin the propositional constant f 

(falsum), with v := Nf (verum), and a single additional (witness) 

axiom: 

 

                 
   

and set
1
 

        

                                                    
 

with, finally 

 

                                                       

['inner cut' or the 'rule / law of (non-) contradiction']. 

 

Conversely, E and O can be obtained as 

 

                                                    
 

                                                       
 

As is well-known, the rules (λ), ( ), ( ), ( ), and ( ), with the 

additional axiom (𝛀), suffice to yield full classical [propositional] 

logic.
2
 

 

On the other hand, if ( ) is present, the rules ( ) and ( ) of the 

[f,N,C]- signature, taken together, are equivalent, in this context, to 

reductio ad absurdum, (𝜕), viewed as a single- premise rule 

 

             𝜕    𝜕                                  
   

                                                                                                                                        
← his O-axiom (the `Law of Duns Scotus'). Cf. e.g., Łukasiewicz (1929) and 

Łukasiewicz (1930), Chapter II, §8. 

 

1. This is the only place where we actually need 𝛀 in derivations.  
 
2. If the basis consists only of rules, as here, the axiom (𝛀) is redundant. See below. 
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Indeed, one has 
 

 𝜕   𝜕                                                    
 

and, conversely, 

 
                      𝜕                                  
       

            

                𝜕                                          
1
 

  

So that, finally, classical [propositional] logic can be based on 

 

(1)  The axiom (𝛀), and the four rules: 

 

(2)  (λ) [the 'Deduction Theorem', implication-introduction], 

 

(3)  ( )[modus ponens, implication-elimination], 

 

(4)  (𝜕) [reductio ad absurdum], and 

 

(5)  ( ) ['the law of (non-) contradiction']. 

 

The axiom is, in fact, redundant, since, in this case, one can define 

explicitly: 

 

                    𝜕     𝜕              
 

We shall keep, however, 𝛀 around for a while, mainly for the sake of 

comparison with the Jaśkowski (1934) version of 'natural deduction'. 

The 'natural deduction' system above is easily seen to be 

equivalent to the axiomatics of Łukasiewicz (1929), modified as 

above such as to fit the primitive [f,N,C]-signature. As the rules have 

been already seen to be derivable from the axioms, this amounts to 

writing down the explicit definitions of the witnesses (here, 

                                                           
1. No need for 𝛀, here. Cf., e.g., Rezuş (1990, 1991).  
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combinators) CB, E, and O in terms of the proof-operators contained 

in the 'basis' {λ,  , 𝜕,  }. 

 

The corresponding (extended) λ-calculus is discussed next. It turns 

out that - if we forget about the constant - one can even formulate it in 

a decoration-free ('type-free') setting. This allows us establishing (its 

Post-) consistency in a straightforward way, using only some very 

basic λ-calculus facts. 

 

§4.  On the primitive [f,N,C]-signature, the minimal setting above – 

consisting of (𝛀) [otherwise redundant], (λ) [implication-

introduction], ( ) [implication-elimination], (𝜕) [reductio ad 

absurdum], and ( ) ['the law of (non-)contradiction'] - can be viewed 

as an extension of the basic ('simple') typed λ-calculus λ[C], obtained 

by 'replicating' its pure (λ)-( )-part. 

 

Formally, the decoration-free (`type-free') syntax of the resulting 

λ𝜕-calculus - λ(𝛀), say - is given by: 

 

Witness-variables :: x, y, z, ... 

 

Witness terms :: a,b,c,d,e,f := x⎹  λx.b⎹  f a⎹ 𝜕x.e⎹  c a. 

 

In the resulting equational system, one has the usual   -conditions 

for (λ) and ( ) [decoration-free spelling]: 

 

                                          
 

                                                  
 

As well as the analogous   -conditions for (𝜕) and ( ): 

 

               𝜕     𝜕                   
 

               𝜕  𝜕                               
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Together with the expected rules of monotony (compatibility of 

equality - here, conversion - with the operations). 

 

This extension of pure λ can be easily seen to be consistent by 

interpreting it in [type-free] λ -calculus, λ , for instance.
1
 

Alternatively, one can choose to equip the resulting calculus with an 

appropriate notion of reduction and establish confluence [via a 

Church-Rosser theorem] first. 

 

The intended decoration (typing) is given by the conditions (λ), 

( ), (𝜕) and ( ). In view of the above, if considered as a (decorated / 

'typed') λ-theory, the outcome - the λ𝜕-calculus λ[f,N,C] - is a witness 

theory for classical logic. 

 

This yields the simplest Curry-Howard correspondence for 

(propositional) classical logic I know of.
2
 (Cf. §7.4, below.) 

 

§5.   In his (1927, 1934), Jaśkowski chose to hide the applications of 

the 'inner cut' ( ) - which, as noted above, would have required the 

additional propositional atom f (falsum) - and expressed reductio ad 

absurdum in the form of a more complex rule, viz. by the Medieval ex 

contradictione quodlibet ['explosion'] principle, viewed as a rule of 

inference: 

 

                                                         
 

Upon adjoining the atom f and the 'hidden' rule ( ), the complex 

Jaśkowski rule ( ) can be obtained as: 

 

                             𝜕               
 

                                            

                                                           
1. This is possible since, unlike the pure λ-calculus λ, the extensional λ -calculus λ  

contains infinitely many nontrivial copies of itself.  
 

2. See also Rezuş (1990, 1991, 1993) and Sørensen   Urzycyn (2006).  
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While, conversely, one can have: 

 

            𝜕  𝜕                                              
 

in terms of ( ) and (𝛀). 

 

The 'hidden' rule ( ), however, can be obtained explicitly from 

Jaśkowski's ( ) only by an ad hoc contextual artifice, setting, e.g., 

 

                                                    
[z fresh for c, a].

1
 

 

As an aside, on ultimate formal grounds, I should have rather 

written down the Jaśkowski rule ( ), as: 
                                                            

                                                           
1. In retrospect, it is hard to say why Jaśkowski did prefer the complex ( )-rule (a 

kind of 'mixed' abstractor, in witness-theoretic terms, like the rather complex case-

construct [orelimination] in intuitionism), as a primitive rule of inference, in place of 

the 'elementary' reductio ad absurdum (𝜕) [here, a monadic abstractor, like (λ)] and 

the 'hidden' rule / operator expressing the 'law of [non-] contradiction' ( ). Prima 

facie, I would suspect the choice was a matter of economy. Although there was an 

even more drastic economy in sight, that both Łukasiewicz and Jaśkowski were, 

apparently, well aware of, viz. by adopting the 'inferential' definition of negation, à 

la Peirce (1885),          in which case the primitive rule ( ) could have been 

replaced by an 'inferential' variant of reductio ad absurdum ( ,a monadic abstractor, 

with                                  in decorated / 'typed' version, etc.). 

Cf. Rezuş (1990, 1991, 1993). As a matter of fact, in the latter case, the witness-

theoretic properties (as regards proof-conversion resp. proof-reduction [= detour 

elimination]) of the  -operator are more involved that those presupposed by the 

'natural' [(𝜕)-( )]-pair, but Łukasiewicz and Jaśkowski did not think in such terms, 

anyway. Even Gentzen (1934-1935) was slightly confused as to the would-be proof-

detours that could - and should - be associated to a genuine classical negation. It 

took us some thirty years, at least, until we were able to reach a clean conceptual 

insight on the matter. See, e.g., Prawitz (1965) for a solution, applying to the 

'inferential' case and the combinator resp. λ-calculus variants, described in Rezuş 

(1990, 1991) [λ -calculi]. Besides, it took us about other twenty years, in order to 

get something as simple as the λ𝜕-calculus sketched under §4 above (Rezuş, cca 

1987), corresponding to what the pioneers - Frege, Peirce, Russell, Łukasiewicz, 

Leśniewski, Tarski etc. - might actually have had in mind. 
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But, as the two premises of ( ) are independent, I am probably 

allowed to use (a subtle form of meta-)  -conversion in this context.
1
 

From this, the reader can easily reconstruct by herself the witness 

theory corresponding to Jaśkowski's natural deduction system for 

classical logic, i.e., a would be Jaśkowski λ 𝛺-calculus - λ[f,N,C], say 

- (equationally) equivalent to λ𝜕𝛀[f,N,C] above. 

 

One might also note the fact that the original system of Jaśkowski 

(1927, 1934) - without f and (𝛀), λ[N,C], say - was just a notational 

device (no proof-conversion, resp. proof-reduction rules). Moreover, it 

was constructed on a functionally incomplete propositional signature 

(as noted before, we cannot retrieve the constants f, v, definitionally, 

from N and C alone), whence the attempt to associate appropriate 

conversion-conditions to the Jaśkowski λ-primitive could only yield a 

proper subsystem of λ(𝛀)[f,N,C]. 

 

§5.1. Worth mentioning is also the fact that Jaśkowki proposed a 

perspicuous graphical representation of his proof-primitives in the 

original paper of 1927 - a kind of block-structure, meant to isolate 

intuitively sub-proofs of a given proof (actually, sub-terms in the 

corresponding λ-calculus description)- , that was perfected by Frederic 

Brenton Fitch (1908-1987) et alii, later on.
2
 

                                                           
1. Viewed abstractly, the witnessed entailments are, actually, a kind of meta-

combinators, or closed meta-terms, in the end. Incidentally, with the terminology 

mentioned earlier, the Jaśkowski witness-operator   should have gen-arity [1,1], not 

gen-arity [2] (sic), whence the alternative spelling above.  
 

2. Cf. Fitch (1952) and Anderson & Belnap (1975, 1992), for applications to 

intensional logics. Notably, a similar representation was invented and used, later - 

independently -, by Hans Freudenthal (1905-1990), in didactic presentations of 

classical logic, as well as by Nicolaas G. de Bruijn (1918-2012), in his work on 

AUTOMATH [automated mathematics] and on the so-called 'Mathematical 

Vernacular' [WOT = Wiskundige Omgangstaal, in Dutch]. On this, see, mainly, de 

Bruijn's lectures on Taal en structuur van de wiskunde [The language and structure 

of mathematics], given at the Eindhoven Institute of Technology, Department of 

Mathematics and Computing Science, during the Spring Semester 1978, and 

summarised subsequently [in Dutch], in Euclides 44 (1979-1980), as well as Rezuş 
(1983, 1990, 1991), for further references. 
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Otherwise, the tedious and rather non-transparent formal 

description of the 'supposition rules' in Jaśkowski (1934) can be easily 

re-shaped, equivalently, in terms of assumption contexts and 

(witnessed) entailments as already suggested in the above. It is 

relatively easy to see that the usual 'structural' rules of Gentzen are 

implicit in Jaskowśki's description. Actually, Gentzen's L-system for 

classical logic is just a disguised form - namely, a special case - of 

'natural deduction'.
1
 

  

§5.2. Equally worth recording here is the (redundant) extension on the 

same primitive propositional signature [f,N,C], mentioned by the end 

of Rezuş (2009, rev. 2016), which consists of adding the double-

negation (DN) rules: 

 

                             [double-negation introduction], 

 

                             [double-negation elimination]. 

 

In the latter case, the (DN) witness-operators [rules of inference] 

( ) and (∆) are supposed to obey inversion principles of the form 

 

                                     
 

                                   
 

                                                                                                                                        
 

1. A Gentzen L-sequent 'multiple on the right',                        , is 

a specific entailment of the form          ̅     ̅    - where  ̅  is a kind of 

'surface negation' of                     a rather confusing idea based on an ad 

hoc piece of ideography -, also known as rejection or refutation (elenchos, in the 

Greek of Aristotle and Chrysippus), about two millenia before both Jaśkowski and 

Gentzen were born. As a matter of fact, mutatis mutandis, Chrysippus' conceptual 

setting was cleaner. Cf. Rezuş (2007, rev. 2016) for details.  
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As earlier, the resulting extension (decorated / 'typed' λ-calculus, 

λ𝜕∆, say) can be shown to be consistent by interpreting its 'type-free' 

variant in the (undecorated) λ -calculus.
1
 

 

It is easy to see that, in the formulation without primitive (DN)-

rules, at least one of the ( / ∆)-conditions would normally fail, 

whence the idea of taking   and ∆ as primitive proof-operators (rules 

of inference). 

 

§6. The extensions to quantifiers (either propositional or first- resp. 

second order) are straightforward.
2
 

 

Illustrated next is the extension to propositional quantifiers on the 

(otherwise redundant) signature [f,N,C,П], with П standing for the 

universal quantifier, like in Łukasiewicz (1929) and Jaśkowski (1934). 

As above,  ,  , ..., possibly with sub- and / or superscripts are used as 

metavariables ranging over formulas. If the propositional variable p 

occurs free (even fictitiously so) in a formula  , we write      in 

order to make this visible. Substitutions are mentioned accordingly: 

       , and        resp. (read 'p becomes   in a, resp. in  '). 

 

For the extended witness-syntax there are required two more 

proof-operators (rules of inference), corresponding to Generalization 

(𝛬) and Instantiation (▶) resp. The new pair [(𝛬),(▶)] is analogous to 

the [(λ),( )]-pair above. 

 

We present here a version close to Jaśkowski (1934), leaving to 

the reader the task of showing equivalence with the corresponding 

                                                           
1. So, once more, consistency can be established already at undecorated / 'type-free' 

level. In fact, λ𝜕∆ is redundant: if the [(∆), ( )]-pair is present, we can leave out 

either the [(λ), ( )]-pair or the [(𝜕), ( )]-pair, viz. λ𝜕∆ is, ultimately, equivalent [in a 

'type-free' setting] with each of its 'halves', λ∆, resp. 𝜕∆. See, mutatis mutandis, §7.5. 

 

2. See, e.g., Rezuş (1990, 1991, 1993) for first-order quantifiers, and, mutatis 

mutandis, Rezuş (1986) for the 'extended propositional calculus' case (i.e., classical 

logic with propositional quantifiers), as well as for the second-order case.  
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formulation of Łukasiewicz (1929). As above, the construction admits 

of a decoration-free description. 

 

The decoration-free ['type-free'] syntax of the resulting system 

(λ𝜕𝛬) is: 

 

witness-variables :: x, y, z, ... 

witness terms :: a,b,c,d,e,f := x  ⎸λx.b ⎸f a ⎸𝜕x.e ⎸c a ⎸𝛬p.a ⎸f ▶ . 

The additional conversion rules are (in 'type-free' spelling): 

 

            𝛬   𝛬        ▶ α           
 

            𝛬  𝛬     ▶                           1, 

 

Together with the corresponding monotony conditions for (𝛬) and 

(▶), meant to make equality (conversion) compatible with the 

operations.
2
 

 

The decoration ['typing'] is, as expected, relative to an arbitrary 

assumption context (i.e., a finite list  ̂ of decorated witness variables, 

omitted below). We have (λ), ( ), (𝜕), and ( ), like before, as well as 

the new rules (for  ,   arbitrary formulas): 

 

                                                   
 

         (▶)   (f ▶  )                          
 

The first- (resp. second-) order case is completely analogous. In 

each case, the corresponding λ-calculi can be shown to be consistent 

by simple translation arguments. 

                                                           
1. Exactly as in Girard's 'System F' (PhD Diss., Paris 7, 1971). Of course, the latter 

λ-calculus is the-[(𝜕),( )]-free fragment of λ𝜕𝛬, i.e., λ𝛬, by present notational 

standards. Cf. Rezuş (1986) for details on the Girard-Reynolds λ-calculus.  
 

2. Since I have omitted, everywhere in the above, any reference to proof-contexts, 

the usual provisoes on p-variables are also tacitly assumed. 
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§7. The careful reader might have noticed a general principle of 

construction behind the witness-theory (proof-system) λ𝜕𝛬 above, viz. 

the fact that the primitive witness- / proof-operators come in pairs 

[(abs),(cut)], where (abs) is a (monadic) abstraction operator and 

(cut) is a 'cut'-operator, i.e., an operation meant to 'eliminate' its 

associated abstractor (abs). Moreover, each such a pair is supposed to 

characterize the associated rules of inference as operators, by 

equational stipulations (here,   -conditions), i.e., more or less, 

algebraically, by indicating their 'characteristic behaviour'. One could 

thus notice a uniform introduction-elimination pattern (of 

construction), provided one thinks in terms of witnesses (here: proofs), 

not in terms of bare formulas (expressing propositions / propositional 

schemes). 

 

Technically, it is also possible to describe a proper extension of the 

(minimal) witness-theory (proof-system) λ𝜕𝛬, based on an idea that 

goes back to the founder of classical logic, the Stoic philosopher 

Chrysippus of Sol[o]i, twenty-two centuries ago. The extension is a λ-

theory, i.e., a consistent λ-calculus, as well (both 'type-free', and 

decorated / 'typed' as above). Of course, I will not credit the famous 

Phoenician with the details, but the reader should be certainly able to 

recognize the Chrysippean spirit behind the construction.
1
 

 

Writing down things in 'Polish' - i.e., in Łukasiewicz notation, as 

everywhere here -, I will use the same propositional signature as 

before, viz. [f,N,C,П]
2
, but choose a slightly different team of 

                                                           
1. Cf. Rezuş (2007, rev 2016), for technical - and historical - evidence supporting 

the claim. The extension works for the system with (DN)-primitives, too. 

 

2. We may want to abbreviate, for convenience,  ̅       and  ̅     (so that  ̅ is 

marked as the 'polar [opposite]' of C, and  ̅ as the 'polar [opposite]' of П, resp.), but 

the Łukasiewicz notation makes this superfluous. One might also note the fact that, 

by the standards of Rezuş (2007, rev. 2016),  ̅ and  ̅ would have counted as 

Chrysippean connectives. Specifically,  ̅ corresponds to the Chrysippean connector 

(binary connective) more, i.e., māllon... ē..., a kind of rather... than..., in English, 

while the quantifier-free part of the extended calculus [with (DN)-primitives] - to → 
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primitive witness-operators, while leaving 𝜕,   and λ unchanged, add 

two kinds of 'pairs', namely  (...,...) and ↓(...,...), as well as a (mixed) 
dyadic abstraction-operator  , with term forming rules  a,f≻, ↓ (a) 

[writing, conveniently,  a,f≻ ≡  (a,f) and ↓ (a) ≡ ↓( ,a)], and 

 (p,x).c[p,x], resp., for proof- / witness-terms a, c[p,x], f and formulas 

 . 

 

Whence the expected formal grammar [at a decoration-free / 'type-

free' level], with p, q, r, ..., as (meta-variables for) propositional 

variables, as ever: 

 

formulas ::  ,   := p ⎸f  ⎸N  ⎸C   ⎸Пp.  
 

w-variables :: x, y, z, ... 

 

w-terms :: a,b,c,d,e,f := x ⎸𝜕x.e ⎸c a ⎸λx.b ⎸ a,f≻ ⎸ (p,x).a ⎸ ↓ (a). 

The (decoration-free / 'type-free') equational theory - called 𝜕λ
* , for 

convenience - consists of 

 

               𝜕       𝜕                   
 

               𝜕  𝜕                               
 

As before, in λ(𝛬), and the following 'polar' conditions: 

 

                       ≻                           
 

                      𝜕       ≻                            ,  
 

as well as 

 

                                                           
 

                                                              

                                                                                                                                        
be ← described next – corresponds exactly to the semantic (C- ̅)-fibration of 

`Chrysippean logic' Ch.  
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Together with the expected monotony constraints on the primitive 

witness operators. 

The intended decoration ('typing') is given by 

 

                𝜕  𝜕                                
 

                                             
 

                                                    
 

Like in the case of λ(𝛬), with moreover, 

 

                    ≻                             
 

                                                              
 

                                     
 

- With the expected restriction on ( ) -, so that the classical 'polarities' 

become obvious.
1
 Note that there is no primitive modus ponens ( ), in 

𝜕λ
* . (See, however, §7.2.) 

A few more (technical) comments are in order. 

 

§7.1. Setting, in 𝜕λ
* , 

 

                                                           
1. Formally, 𝜕 looks, in the end, like a kind of degenerated   (sic). The informed 
reader has already realised the fact that the ( -↓)-rules are just (undecorated / 

'typefree') analogues of the usual intuitionistic  -rules. Cf. Rezuş (1986, 1991), etc. 

On the historical side, if I am not very mistaken, I remember having encountered 

something similar to the 'polar' pair [(λ)-( )] in work of Dag Prawitz, going back to 

the late nineteen-sixties and the early seventies (although with no reference to the 

Stoic lore and / or to would-be [classical] proof-isomorphisms, i.e., to proper proof-

conversion rules). Whence, ultimately, the basic idea behind the construction of 

𝜕λ*( ) should be, very likely, accounted for as a piece of (historical) data-retrieval, 

rather than as a genuine finding, due to the present author. In retrospect, virtually 

any mindful reader of Prawitz, already familiar with the basics of λ-calculus, could 

have come out with a similar proof-formalism, even ignoring the Chrysippean 

antecedents. 
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We get conditions analogous to ( λ*

) and ( λ*
), viz. 

                         𝛬                       
 

                  𝛬  𝜕                                     
 

As well as monotony for the defined operator. 

 

Note that the defined operator inherits the intended decoration 

('typing') from the primitive decoration of the definientia. 

Conversely, let us replace the primitive dyadic abstractor  , of 

𝜕λ
* , with a primitive monadic abstraction operator 𝛬, subjected to 

the conditions (   ) and (   ) above, including monotony for 𝛬, and 

call the resulting system 𝜕λ
*𝛬*

. Defining, in the latter system, 

 

                                        𝜕          
 

One has, by easy calculations, (  ) and (  ), so that, ultimately, 𝜕λ
*  

and 𝜕λ
*𝛬*

 turn out to be equationally equivalent. 

 

§7.2. It is easy to establish the fact that λ𝜕𝛬 is a subsystem of 𝜕λ
* .

1
 

Indeed, define, in    𝜕λ
* , 

 

                           𝜕       ≻                           
 

This yields ( λ) and ( λ), and, of course, monotony for the 
defined ( )-operator.  

 

Set now, as before, 

            

                                                              

            (df ▶) c▶    𝜕                                   
 

                                                           
1. To show that λ𝜕𝛬 is a proper subsystem of 𝜕λ*  requires a more involved 

argument. I'd rather defer the details (too far from the subject of the present notes, 

anyway). 
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This yields ( 𝛬) and ( 𝛬), as well as the expected monotony 

conditions for the defined [(𝛬)-(▶)]-pair of operators. 

The fact that the defined operators inherit the intended decoration 

('typing') from the primitive decoration of the definientia is obvious. 

 

§7.3. Incidentally, the ( -↓)-free fragment of ['type-free'] 𝜕λ*  - call it 

𝜕λ*, for convenience - admits of an alternative, more general 

formulation [at a decoration-free level]. 

 

Indeed, setting 

            

                         𝜕                                   
We get, in 𝜕λ*, 

 

           (  )       ≻                                
 

           (   )               ≻                               
 

Together with the expected monotony condition for ∫, and it is 

obvious that we can trade ∫ for λ in this context (at a decoration- / 

'type-free' level), i.e., that one could have had, in the background, a 

calculus 𝜕∫, say, instead of 𝜕λ*, in the above. 

 

To see this, define, as above, 

           

                                                             

                       𝜕       ≻                           
 

In 𝜕∫. This yields the expected conditions ( λ*
) and ( λ*

), as well as 

( λ) and ( λ), so that 𝜕∫ and 𝜕λ* are equationally equivalent, too. 

 

As a bonus, for 𝜕∫ (Post-) consistency is straightforward. The latter 

is a (proper) subsystem of λ : define ∫, in λ -calculus, by 

 

                           𝜕                      
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Where j(c), j := 1, 2, are the usual λ -projections, and 𝜕 ≡ λ, for 

convenience.
1
 

 

Note that the latter definitional pattern of the (λ, )-pair, in 𝜕∫ - 
actually, in λ  - can be iterated, in the obvious way, in order to yield 

an infinite sequence of distinct (λ, )-pairs (for an alternative, see 

§7.5, below). 

 

For 𝜕∫, the intended art deco would have been different, however. 

Actually, equational equivalence holds only in a decoration-free 

setting. In 𝜕∫, one should change the primitive (propositional) 
signature, by replacing the primitive C [implication] with D [the 

Sheffer-functor' incompatibility, or nand, i.e. semantically, negated 

classical conjunction], whereupon N [classical negation] becomes 

redundant, by setting Np := Dpp. The resulting ['typed'] calculus 

𝜕∫[f,D], say - based on the witness primitives 𝜕,  , ∫ and the pair-

construct  , as well as on the associated   -conversion conditions 

( 𝜕), ( 𝜕), and ( ∫), ( ∫), resp. - is, actually, an extension of 𝜕λ* 

[f,N,C], with Cpq := DpNq, in 𝜕∫[f,D].
2
 

 

§7.4. [A few more extensions.] Where       are equational theories, let 

us write, for convenience,      , resp.      , for the fact that    is 

a subsystem of   , resp. that    and    are equationally equivalent.  

 

 

                                                           
1. The λ -calculus is known to be consistent by a well-known lattice-theoretical 

(actually topological) construction due to Dana Scott (1969), as well as by 

constructive ('syntactical') means, as shown recently by Kristian Støvring 

(November 2005, rev. 2006). Notably, Støvring's method of proof applies to λ 𝛬, as 

well, i.e., to the decoration-free ('type-free') extension of λ  with a [(𝛬),(▶)]-pair 

satisfying, mutatis mutandis, ( λ) and ( λ). 

 

2. In his Warsaw lectures, Łukasiewicz alluded actually to the alternative - cf., e.g., 

Łukasiewicz (1929), Chapter II §17 -, but he was, apparently, distracted by 

provability details on Henry M. Sheffer (1913) and Jean Nicod (1917), so that the 

idea was diluted, later on. It is only in (very) recent times that the Peirce-Sheffer 

nand and nor connectives deserved a proper treatment in 'natural deduction' terms.  
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From the above, we know already that 

 

                       𝜕  𝜕   𝜕      
 

The reader can establish easily the fact that, in 𝜕λ*, one can 

replace ( λ*
) by the condition: 

 

                             ≻              
 

Let now [in the syntax of 𝜕λ*],             , and consider 

the (equational) extensions                       

     [in the syntax of 𝜕λ*], and         𝜕   [in the syntax of 

𝜕∫], with the additional conditions: 

 

                       𝜕            𝜕            ≻   
 

                   𝜕                            ≻   
 

resp. So, in particular,                  .1 From the above, 

one can establish the fact that 

 

                          2 

 

The reader may also want to contemplate, in particular, the 

separation properties of the λ𝜕p-axiomatics, which consists of [1] 

pure  - -λ-conditions, ( λ), ( λ), [2] pure  - -𝜕 conditions, ( 𝜕), 

( 𝜕), as well as (mixed) [3]  - - -conditions, ( p), ( p), on the 

primitive 'pairs' ( ). 

                                                           
1. One can also spot some obvious redundancy in 𝜕∫p. See §7.7.  
 

2. For an explicit way of inserting the 𝜕-segment - i.e., the [(𝜕)-( )]-pair - in λ , at 

decoration-free ['type-free'] level, see §7.5. All inclusions are strict. As for λ , 

'projections' - relative to a primitive  , where available - are definable in p-

subsystems, but the resulting pairing is not 'surjective', i.e. (  ) ['surjectivity of 

pairing'] fails.  
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Summing up, the intended decoration ('typing') for λ𝜕p[f,N,C], 

based on the bare 'propositional' (quantifier-free) syntax: 

Formulas ::  ,   := p ⎸f  ⎸N  ⎸C   

 

w-variables :: x, y, z, ... 

 

w-terms :: a,b,c,d,e,f := x  ⎸λx: .b ⎸f a ⎸𝜕x:N .e ⎸c a ⎸ a,f≻, 

 

Is given by: 

 

                                                  
                                            
 

              𝜕  𝜕                                
 

                                           
 

                      ≻                          
 

i.e., in this version, the primitive rules of classical ['propositional'] 

logic, based on the primitive [f,N,C]-signature, are the 'Deduction 

Theorem', modus ponens, reductio ad absurdum, the 'law of (non-) 

contradiction', and the rule ( ), a rule of 'NC-introduction', so to 

speak. 

 

§7.5. On a different route, one can define explicitly, in λ , a (𝜕, )-pair 

satisfying ( 𝜕) and ( 𝜕), as well. 

 

With a usual primitive pairing (i.e., pairs  a,b≻ and projections 

j(c), j:=1,2), as ever, let [(λ),( )] be an arbitrary (abs,cut)-pair 

satisfying ( λ) and ( λ), and define successively: 
 

                                          
 

                                   ≻   
 

            𝜕   𝜕       𝜕                     
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                                  𝜕             
 

                              
 

Iterating, next, for any natural number n, 

 

                                                       
            
 

            𝜕   𝜕                         
 

                                                  
 

                               
 

From this, we get the 'inversion': 

 

                         
 

                         
 

And, for any natural number n, ( - )-conditions: 

 

                                   
 

                                              
 

         𝜕         𝜕                  
 

         𝜕   𝜕                               
 

As well as the expected monotony-rules for the operations so 

defined. 

In other words, unlike pure λ-calculus, λ, the λ -calculus, λ , 

contains infinitely many distinct (non-trivial) copies of itself, so to 
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speak. In particular, the fragments λ∆,  ∆, and λ , defined in the 

obvious way, by the corresponding ( - )-conditions, are easily seen to 

be equationally equivalent. 

The availability of the 'inversion' [( ∆),( ∆)] insures consistency 

for calculi containing, as a primitive, a [(∆),( )]-pair satisfying ( ∆) 

and ( ∆). 

 

§7.6. In the end, 𝜕λ
*  - as well as λ𝜕p  (i.e., the extension of λ𝜕p 

with ( -↓)-primitives) - is (Post) consistent, and so are the 

corresponding (DN)-extensions. For the ( -↓)-free part of the proof, 

the result is already contained in the above. The genuine ( -↓)-part 

consists of a trivial translation argument, collapsing the full system on 

its ( -↓)-free fragment. 

 

§7.7.  One might also notice that the analogous calculi 𝜕∫(p) [f,D,Π], 

based on {(𝜕), ( ), (∫), ( ), ( ), (↓)}, are 'polar' (Chrysippean) 
constructions, as well. The same remark applies to the corresponding 

(DN)-extensions. The basic equational conditions are ( 𝜕), ( 𝜕), ( ∫), 
( ∫), while the p-extension has also (𝜕∫), whereupon either one of ( 𝜕) 

or ( ∫) are redundant. 
 

§7.8. As a final remark, all consistency proofs mentioned in this paper 

amount to an easy - even though oft slightly involved - exercise of 

(explicit) definability in the (type-free) λ -calculus (λ ). 

Algebraically speaking, we are dealing with (a rather specific class of) 

monoids. Since (the intuitionistically decorated) λ  is also known as 

'the internal language of CCCs' [cartesian closed categories] among 

category theorists, most of the facts relevant here should also amount 

to category theoretic folklore.
1
 

 

                                                           
1. The specific subject - falling under the label cartesian closed monoids [CCMs, for 

short] - has been invented by Dana Scott and Joachim Lambek sometime during the 

1970's and has been vastly explored since, mainly in research on categorical models 

of λ-calculus. On the equational theory of CCM's, also known as C-monoids – 

equivalent with the ['type-free'] λ -calculus -, cf. Koymans (1982, 1984), Lambek & 

Scott (1986). 
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§8. Coda. I hope my discussion above has made more or less clear 

what Jan Łukasiewicz - and his (very) young student Stanisław 

Jaśkowski, as well as his (equally) young colleague Alfred Tajtelbaum 

[Tarski]
1
 - did actually know and / or could have known, as regards 

'natural deduction', during the mid- and late twenties. Why they did 

not invent something like [decorated / 'typed'] λ-calculus, in order to 

make things conceptually clean, evades me completely. It's up to my 

better informed - and more gifted - readers to speculate upon. 
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IN MEMORY OF RAYMOND SMULLYAN 

 
Melvin Fitting 

 
Raymond Smullyan passed away February 6, 2017, at the age of 97.  

He had a long and distinguished career as a logician, and an equally 

distinguished career as a writer of popular puzzle books based on 

logic.  He had many other interests as well, and I will touch on these 

later on. Prof. Smullyan was born May 25, 1919 in Far Rockaway, a 

part of New York City very far from the city’s centers.  He showed 

independence early on, attended several colleges, and finally received 

an undergraduate degree from the University of Chicago, and then a 

PhD from Princeton, where Alonzo Church was his mentor.  This was 

in 1959, when he was already 40, a late start for an academic career. 

 

Prof. Smullyan’s first published paper preceded his degree and 

remained one of his most cited academic works, “Languages in which 

self reference is possible”, in Journal of Symbolic Logic, 1957.  In it 

he reduced Gödel’s machinery for proving incompleteness to a 

minimum, establishing that such results held for formal systems 

substantially weaker than Peano arithmetic.  In a sense he extracted 

the essential core of Gödel’s argument. 

 

His 1959 dissertation gave rise to several published papers.  The 

dissertation itself was published in 1961 by Princeton University Press 

as Smullyan’s first book, Theory of Formal Systems.  It introduced a 

remarkable range of influential material.  His work from “Languages 

in which self-reference is possible” was developed as part of a general 

approach.  A new atomata theoretic class called rudimentary was 

introduced.  Fundamental results in recursion theory were proved, in 

particular a double recursion theorem.  And what was of most interest 

to me personally, an extremely simple formalization of recursion 

theory itself was created, Elementary Formal Systems.  This reduced 

the machinery needed to define recursive enumerability and the 

recursive functions to an intuitively attractive minimum.  And this is 

something I want to say a few things about. 
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In the 1960’s there was much work concerning the notion of 

computation—in particular, what might computation mean over 

arbitrary structures.  Many different approaches were introduced and 

equivalences were established.  Much depended, for instance, on 

whether the structure admitted a recursive pairing function.  But in 

two short abstracts in 1956 in the Bulletin of the American 

Mathematical Society, Smullyan had already sketched elementary 

formal systems for arbitrary structures, and noted that on a structure of 

arithmetic it yielded ordinary recursion theory; on a structure of words 

over a finite alphabet it yielded Turing computability on words, and so 

on.  Unfortunately this generality was not discussed in Theory of 

Formal Systems, and the extent of applicability was not generally 

known until years later. 

 

For a number of years logic programming was an important topic 

of research in computer science. A semantics was developed for it 

(without negation as failure) by van Emden and Kowlski in 1976.  It 

wasn’t realized until later that Smullyan’s elementary formal systems, 

on the structure of formal terms, essentially coincided with Prolog, 

and the van Emden/Kowalski approach had already appeared in one of 

Smullyan’s 1956 abstracts. It should give some idea of the fruitfulness 

of Smullyan’s work from this period, that important developments 

could lay there unrecognized because there was so much else to think 

about. 

 

Prof. Smullyan’s second book was First-Order Logic , in 1968.  

The idea, in part, was to simplify Beth’s semantic tableau machinery 

and use it as the basis for first-order logic.  Along the way the Model 

Existence Theorem was introduced (with a different name), uniform 

notation was presented, a constructive proof of cut elimination was 

given in an abstract setting that yielded it simultaneously for both 

tableaus and the sequent calculus. The book has influenced several 

generations of logicians, and has been reprinted in the Dover book 

series, 2010.  This work has also had an unanticipated life in computer 

science, in the field of automated theorem proving.  The Tableaux 

conference is devoted to the use of tableau methods applied to a wide 
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range of logics, and most of the papers at these meetings trace back to 

Smullyan’s book in one way or another. 

 

Subsequently Prof. Smullyan wrote several other books giving his 

mature thoughts about the topics that always occupied him, beginning 

with Theory of Formal Systems.  These are Gödel’s Incompleteness 

Theorems, 1992, Recursion Theory for Metamathematics, 1994, and  

Diagonalization and Self-Reference, 1994.  In addition, jointly with 

Melvin Fitting, there is a comprehensive treatment of axiomatic set 

theory, Gödel’s constructible sets, and Cohen’s forcing, in Set Theory 

and the Continuum Problem, 1996.  

 

At some point in the 1970’s, while continuing his mathematical 

logic researches, Prof.  Smullyan developed an interest in puzzles that 

are based on logic.  Martin Gardner devoted a column in the magazine 

Scientific American to some of these, and they turned out to be quite 

popular.  This led to What is the Name of This Book, 1978.  It was 

quite successful, and was followed by other books: This Book Needs 

No Title, 1980, Alice in Puzzle-Land, 1982, and many, many more.  

There have been a large number of translations into many languages, 

and non-academics may know Prof. Smullyan entirely through these 

works. 

 

Prof. Smullyan realized that puzzles could be used to get across 

some of the fundamental discoveries of modern logic.  This led to his 

book The Lady or the Tiger? in 1983, which took readers through the 

basic ideas of Gödel’s incompleteness theorem, via a series of puzzles.   

 

This was followed by To Mock a Mockingbird, 1985, which 

explored the Lambda calculus via puzzles about birds.  The Lambda 

calculus is a system of formal logic with applications to the design and 

semantics of computer languages.  Prof. Smullyan’s book was of such 

interest that the automated theorem-proving group at Argonne 

National Laboratories once developed a program specifically for 

solving his so-called bird puzzles. Another work along these lines is 

Forever Undecided, 1987, which discusses Gödel’s theorem in greater 

detail that before, and also modal logic and provability logics. 
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Smullyan’s book, Satan, Cantor, and Infinity, 1992, discusses issues 

of probability, infinity, time, and change, largely through his familiar 

medium of puzzles.  And I should mention The Magic Garden of 

George B and Other Logic Puzzles, 2007, which uses puzzles to 

present Boolean algebra and the Stone representation theorem. 

 

For his last works Prof. Smullyan turned back to a more 

conventional format and wrote two textbooks which he hoped would 

be useful in the teaching of first-order logic and its metatheory.  These 

are A Beginner’s Guide to Mathematical Logic, 2014, and A 

Beginner’s Further Guide to Mathematical Logic, his last book, 

published in 2016. 

 

Prof. Smullyan also had an interest in what are called retrograde 

analysis chess puzzles.  A simple example of one of his puzzles might 

show a board, you are told a piece is missing, and asked whose move 

it is. (It may not be possible to figure out which piece is missing, by 

the way.  It depends on the puzzle.)  Prof. Smullyan incorporated his 

puzzles into witty and entertaining stories, and these were published as 

The Chess Mysteries of Sherlock Holmes, 1979, and The Chess 

Mysteries of the Arabian Knights, 1981. 

 

Prof. Smullyan had numerous interests outside logic.  He was a 

first-rate pianist, and once considered a career as such.  But he 

developed problems with his tendons and decided to concentrate on 

mathematical logic instead.  Several of his performances can be found 

on YouTube, and one CD is available for purchase. 

 

In his younger days Prof. Smullyan supported himself as a 

professional magician, doing slight of hand at tables in a nightclub.  

Almost to the end of his life, when he visited a restaurant he would 

bring a pack of cards and would go from table to table entertaining 

diners.  I’ve seen this happen often, and always a good time was had 

by all. 

 

There were lesser interests that would have been major for anyone 

else.  He had a lifelong enthusiasm for astronomy and, when I first 
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knew him he was making his own (quite large) telescopes, grinding 

his own lenses.  Much later he became interested in sound 

reproduction, and put together some very formidable speaker systems 

with somewhere around 40 speakers, each of which could be 

individually controlled, to experiment with sound balance and related 

aspects of music reproduction.  Prof. Smullyan also experimented 

with three-dimensional photography for many years.  He developed a 

way to build viewers that were better and cheaper than those 

commercially available, and I believe even published an article about 

it. 

 

Although Prof. Smullyan claimed to not know if he was religious 

or not, he had a deep interest eastern religions.  Probably his best-

known writing in this area is The Tao is Silent from 1977. 

 

Prof. Smullyan received his undergraduate degree from the 

University of Chicago in 1955 and his PhD from Princeton in 1959 

with Alonzo Church.  He taught at Belfer Graduate School of Yeshiva 

University from 1961 to 1968, at City University of New York from 

1968 to 1982, and at Indiana University at Bloomington from 1981 to 

1989, when he retired from teaching.  He was married briefly when he 

was young, and subsequently to Blanche de Grab, also a pianist, who 

ran a well-regarded music school in Manhattan for many years.  This 

was a long and happy marriage.  Blanche passed away in 2006 at the 

age of 100, having been cared for by Raymond and assistants during 

the last year of her life. 

 

Prof. Smullyan was a remarkable man, humorous and kind.  He 

was intense, concentrating on his own interests sometimes to the 

exclusion of all else, but his interests were, in fact, of wide interest.  I 

was honored to know him.  He left a legacy for us all. 

  



 

 
 

 
 
 
 
 
 

 
 

Raymond Smullyan 

 

(May 25, 1919 – February 6, 2017) 

  



 

 
 

ANDRAS HAJNAL, LIFE AND WORK
1
 

 
Mirna Džamonja 

 
On July 30, 2016, the international set theory community lost one of 

its greatest, long standing, contributors: Andras Hajnal. He was known 

for his many theorems, including the Hajnal Free Set Theorem, 

partition calculus, where together with Erdős and Rado he was a 

founding father, and the theory of set mappings. He is also, with 

Galvin, the author of a celebrated theorem in cardinal arithmetics 

which was a precursor to Shelah's pcf theory. Although mostly known 

for his work on combinatorial set theory, Hajnal contribued to the 

study of constructibility, in an early work that extended the work of 

Godel by introducing the idea of relative constructibility. He also 

made major contributions to finite combinatorics, including his 

theorem with Szemeredi on equitable coloring of graphs that proved a 

conjecture of Erdős. In this article we shall briefly speak about 

Hajnal's life and then review some of his greatest theorems. 

 

András Hajnal's life 

 

Andras Hajnal was born on May 13, 1931 in Budapest, the city where 

he spent many years, from which he moved to the United States, to 

which he eventually returned at the end of his life, and where he died. 

He lived difficult days in Budapest during the second world war and, 

after being liberated by the Russian soldiers in 1945, he determined 

that whatever would happen later, he had had the hardest part of his 

life and it should go differently later. We have certainly witnessed 

that, as far as mathematics is concerned, it certainly did, since his was 

one of the most successful careers in mathematics. A large part of it is 

closely connected to the Eotvos Lorand University in Budapest, where 

he received his university diploma in 1953 and where he was a faculty 

member from from 1956 to 1972. He studied for his Candidate of 
                                                           
1. The full text of the present article, which has been written at the request of the 

editors, is available on the official website of the European Set Theory Society too: 

https://ests.wordpress.com/2016/07/30/andras-hajnal-may-13-1931-july-30-2016/  

https://ests.wordpress.com/2016/07/30/andras-hajnal-may-13-1931-july-30-2016/
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Mathematical Sciences at the University of Szeged degree, under the 

supervision of Laszlo Kalmar and obtained it in 1957 and then he 

obtained his Doctor of Mathematical Science degree in 1962. (Both 

these degrees in Hungary at that time were given by an independent 

national agency, not by a single university). In 1972, Hajnal started to 

work at the Math. Inst. of Hungarian Academy of Sciences as head of 

the department. He was elected member of the Hungarian Academy of 

Sciences in 1976. Then, in 1994 he moved to Rutgers University 

(USA) to become the director of the centre DIMACS, and he 

remained there as a professor until his retirement in 2004. 

 

Hajnal was an Honorary President of the European Set Theory 

Society and, since 1982, a member of the Hungarian Academy of 

Sciences, where he directed its mathematical institute from 1982 to 

1992. He was the general secretary of the Janos Bolyai Mathematical 

Society from 1980 to 1990, and president of the society from 1990 to 

1994. Since 1981, he has been an advisory editor of the journal 

Combinatorica. In 1992, Hajnal was awarded the Officer's Cross of 

the Order of the Republic of Hungary. Hajnal’s influence on 

mathematics and mathematicians is enormous. We shall discuss 

Hajnal’s mathematics shortly, as for mathematicians, some of his 

students were Miklos Ajtai, Richard Carr, Peter Hamburger, Istvan 

Juhasz, Peter Komjath, Gyorgy Petruska and Lajos Soukup. Some of 

his mathematical grandchildren are Marianna Csornyei and Miklos 

Laczkovich. Generations of mathematicians in Hungary learned their 

set theory from a book written by Hajnal and Mate, which is since 

1999 available in English, in an updated version authored by Hajnal, 

Mate and Hamburger. My students in England and in France 

invariably get this book on their reading list and they love it. 

 

The writer of these lines did not have the chance to co-author a 

paper with Hajnal, but we were good friends and colleagues. I saw 

him regularly at Rutgers, where I was a frequent visitor and I had the 

honour to speak at the 1999 MAMLS conference at Rugers which was 

devoted to Hajnal. We were sad at that conference since it was known 

that he had been diagnosed with lung cancer. But, in spite of the odds, 

he made it! He fully recovered and a happy '80th birthday of Hajnal' 
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conference was held at Rutgers in 2011. In 2007 my mother was 

diagnosed with lung cancer and I asked Andras for advice and 

contacts. He generously shared all he knew, but unfortnately it did not 

work neither for my Mum, who died in 2009, nor for Hajnal's own 

wife Emilia who died of lung cancer in 2015. I wrote to him 'You had 

such a wonderful life together and were an example of a couple whose 

love lasted a lifetime.’ I have heard that Andras was no longer the 

same after she died, and he left us too, suddenly, of a heart attack. The 

last correspondance we had dates from 1st of July 2016, just a few 

weeks before his death, when we discussed the compactness of the 

chromatic number of graphs. Although he claimed the he was slower 

than before, I found him totally up to it and I am sorry that we could 

not continue these discussions later. 

 

Emilia and Andras had one son, Peter, who is a very successful 

scientist in his own right. 

 

Hajnal's Mathematics 

 

All together, Hajnal published 164 papers and four books. One of the 

books is a celebrated bible of the partition calculus, “Combinatorial 

set theory. Partition relations for cardinals”, co-authored with Erdős, 

Mate and Rado. Another one is the book “Set Theory” which we 

mentioned above (in Hungarian and in English) and, in addition, he 

wrote a school manual on graph theory for school children. He also 

edited 7 volumes of mathematical papers. Hajnal’s papers were 

written in three different languages: Hungarian, German and English. 

A list of Hajnal’s papers is available on his web page at: 

https://www.renyi.hu/~ahajnal/hajnalpu.pdf 

 

We refer to this publication list for references, although it is 

unfortunately not complete. 

 

The first association that Hajnal's name gives us is the 

combinatorial set theory, including his many papers with Paul Erdős. 

But his first work was on something entirely different: in his Ph.D. 

thesis in written in 1956, he introduced the models      and proved 
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that if κ is a regular cardinal and   is a subset of    then ZFC and 

        hold in     . This can be applied to prove relative 

consistency results: 

e.g., if          is consistent then so is          and      
   . This was before the invention of forcing which gave a tool for 

proving such consistency results. These results were published as a 

paper in 1961.  

 

Moving on, we quickly arrive, in 1961 (paper 12 on his list of 

publications), to the celebrated Hajnal’s free set theorem. Suppose that 

we have a set   of size  , a cardinal      and a function     
      . A subset    of   is free if for every     in    we have that 

  does not belong to      and vice versa. Ruziewicz had conjectured 

that in this situation there must be a free set of size  . Continuing a 

line of partial results by eminent authors, Hajnal finally confirmed this 

conjecture in a “surprisingly simple and ingenious way”, as said Paul 

Erdős. 

 

Hajnal is famous for his work on partition relations for cardinals, 

much of it in collaboration with Paul Erdős. Indeed, together they 

published 56 papers, both in finite and in infinite combinatorics. They 

also largely influenced the international community by publishing 

papers containing a list of open questions. He was also a majr 

contributor in the partition calculus of ordinals, including his result 

with Baumgartner (1973) that for every partition of pairs of vertices of 

the complete graph on    vertices into finitely many subsets, at least 

one of the subsets contains a complete graph on   vertices for every 

countable  . This result contains a new idea in the method of proof, 

since it was first proved under MA and then converted into a ZFC 

result by absoluteness. 

 

With Juhasz (himself now a member of the Hungarian Academy 

of Sciences), Hajnal worked on set-theoretic topology and they were 

the first ones (1968) to construct an  -space and an  -space. They 

published 32 joint papers. 
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In graph theory, Hajnal made contributions both in the finite and 

the infinite domains. A celebrated construction is his construction of 

two graphs of chromatic number    whose product is countably 

chromatic (1985). This shows that Hiedetniami conjecture is false for 

the infinite. In finite graph theory, probably his most well known 

result is The Hajnal–Szemeredi theorem (1970) on equitable coloring, 

proving a 1964 conjecture of Erdős: let   denote the maximum degree 

of a vertex in a finite graph  . Then   can be colored with    
  colors in such a way that the sizes of the color classes differ by at 

most one. Hajnal has several important papers in graph theory with his 

former student Komjath, now a member of Hungarian Academy in his 

own right. 

 

In a different part of set theory, Hajnal proved together with 

Galvin (1975, Annals of Mathematics) a result that was very 

unexpected at the time: if    
 is a strong limit cardinal then       

 
(   )

 . This was the result that initiated Shelah’s pcf theory. 

 

Hajnal had many other great contributions and continued 

producing mathematics to the very end of his life.  

 

What else to say? All great men die but behind some of them, their 

theorems remain. Hajnal was in this class.  
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MY MEMORIES OF PROFESSOR JACK SILVER  
             

Aleksandar Ignjatovic 

 
I was very saddened by the news that Professor Jack Silver

1
, whom I 

had the privilege of having as my PhD thesis advisor, had passed 

away on December 22, 2016.  During my doctoral studies at UC 

Berkeley from the fall of 1985 to the spring 1990 I used to meet with 

him almost every week and had developed quite a close relationship 

with him. He tended to be quite a private and reserved man, but, at the 

same time, I found him to be very kind and generous. He would take 

me for lunch from time to time and we had lively discussions on many 

topics. 

 

                                                           
1. Jack Howard Silver was a set theorist and logician at the University of California, 

Berkeley. Born in Montana, he earned his Ph.D. in Mathematics at Berkeley in 1966 

under Robert Vaught before taking a position at the same institution the following 

year. He held a Alfred P. Sloan Research Fellowship from 1970 to 1972. Silver 

made several contributions to set theory in the areas of large cardinals and the 

constructible universe  . n his 1975 paper "On the Singular Cardinals Problem", 

Silver proved that if a cardinal   is singular with uncountable cofinality and 

        for all infinite cardinals      , then        . Prior to Silver's proof, 

many mathematicians believed that a forcing argument would yield that the negation 

of the theorem is consistent with ZFC. He introduced the notion of a master 

condition, which became an important tool in forcing proofs involving large 

cardinals. Silver proved the consistency of Chang's conjecture using the Silver 

collapse (which is a variation of the Levy collapse). He proved that, assuming the 

consistency of a supercompact cardinal, it is possible to construct a model where 

       holds for some measurable cardinal  . With the introduction of the so-

called Silver machines he was able to give a fine structure free proof of Jensen's 

covering lemma. He is also credited with discovering Silver indiscernibles and 

generalizing the notion of a Kurepa tree (called Silver's Principle). He discovered    

("zero sharp") in his 1966 Ph.D. thesis, discussed in the graduate textbook Set 

Theory: An Introduction to Large Cardinals by Frank R. Drake. Silver's original 

work involving large cardinals was perhaps motivated by the goal of showing the 

inconsistency of an uncountable measurable cardinal; instead he was led to discover 

indiscernibles in   assuming a measurable cardinal exists. Ref: 
https://en.wikipedia.org/wiki/Jack_Silver  

https://en.wikipedia.org/wiki/Jack_Silver
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Needless to say, he had a truly extraordinary mind. His memory 

had perfect recollection and his knowledge of European history was 

truly astonishing. Sometimes he would ask me about historic figures 

and events from the Serbian past about which I had never heard 

before, but which I would subsequently find in books at the main 

library of the UC Berkeley. 

 

From time to time I would get stuck not being able to understand a 

proof from a paper I was reading.  Jack would take a brief look at the 

paper and would then often come up with his original solution which 

would make the paper appear almost silly. Once, I could not help it 

and I asked him in astonishment: “How did you do this?” “Did what?” 

he asked back. “How did you come up with such a solution?” I 

clarified.  He looked puzzled and replied “I do not know, I just saw 

it!” Jack was not just an extremely smart man, he was a true genius. 

 

The desk in his office had a huge and ever growing pile of papers 

on top of it, several feet high. Once I decided to play a prank on him – 

I was taking his Proof Theory class for which I had submitted 

homework, so I asked him if he could give me back my homework 

because I wanted to keep it. To my utmost amazement, he stuck his 

arm into the middle of the pile on his desk and pulled out my 

homework! 

 

As a prototypical Professor, Jack always wore a jacket that was so 

old that he probably had bought it during his student years; in fact, on 

all photos I have seen of him, he always wears this very jacket. 

 

However, he loved fancy cars and had a top of the line Volvo. 

Once he came late for our weekly meeting, noticeably upset. “You 

would not believe what has just happened to me!” he said. It turned 

out that he was having a problem unlocking his car and a nearby 

policeman approached him and grabbed his hand asking “What do you 

think you are you doing?!”. Apparently, the policeman could not 

believe that a person wearing such an old jacket could have such a 

fancy car, so Jack had to show him the registration. 
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As with everyone else at UC Berkeley, I had heard rumors that he 

believed that ZFC set theory was inconsistent, so once I asked him if 

this was true. “Well, that might very well be the case,” he said with a 

devilish smile, “but what is definitely true is that quite a few set 

theorists are seriously worried that I might just prove that ZFC is 

indeed inconsistent!” 

 

He was a very sincere, genuine and entirely unpretentious man; to 

my utmost bewilderment, once he told me: “I never proved anything 

interesting or important, despite many attempts.” Knowing Jack all 

too well, I knew that he meant it seriously. 

 

He will always occupy a special place in my memory and my 

heart. 

  



 

 
 

 

 

 

 

 

 

 
 

Jack Silver 

 

(23 April 1942 – 22 December 2016) 

 
 



 

 
 

A LOGICIAN’S AUTOBIOGRAPHY 

 
John Corcoran 

 
1. Introduction 
 

John Corcoran (born 1937, Baltimore, USA) is a logician, 

philosopher, mathematician, linguist, and historian of logic. His 

philosophical work stems from his desire to understand proof. This led 

to  concern  with  the  interrelations  of  objectual,  operational,  and  

propositional  knowledge,  the nature  of  logic,  the  nature of 

mathematical logic,  information-theoretic  foundations  of  logic, 
conceptual structures of metalogic, relationships of logic to 

epistemology and ontology, and roles of proof theory and model 

theory in logic.  His  interests and  conclusions  continue to  evolve  

but many are foreshadowed in his earliest works, especially  his 1973 

paper “Gaps between logical theory and mathematical practice”. See 

References below. 
 

Corcoran’s papers have been translated  into  Arabic,  Greek, 

Persian, Portuguese, Spanish, and Russian. His 1989 signature  essay  

“Argumentations and logic”  has been translated into four languages.  

Fourteen  of  his  papers  have  been  reprinted;  one  was  reprinted  

twice.  He  has  been principal author on over  40 co-authored works. 

His 2015 article  “Existential import today”,  coauthored with the  

Iranian logician Hassan Masoud,  is currently first on its journal’s 

most-read list with over 5000 readers. 

 

His  dedication  and  service  to  his  colleagues  and  his  constant  

interest  in  their contributions  are  reflected  in  his  many  published  

reviews,  over  100  in  Mathematical  Reviews alone, the latest in 

2017. 
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2. Education 

 

Pre-doctoral  studies:  Baltimore  Polytechnic  Institute,  Engineering  

1956, Johns Hopkins University BES Engineering 1959, MA 

Philosophy 1962, PhD Philosophy 1963. 

Dissertation:  Generative  Structure  of  Two-valued  Logics;  

Supervisor:  Robert  McNaughton,  a PhD student of Willard Van 

Orman Quine. 

 

Post-doctoral  studies:  Yeshiva  University  Mathematics  1963–4,  

University  of  California Berkeley Mathematics 1964–5.  

 

Corcoran’s  student  years,  the  late  1950s  and  early  1960s,  

were  wonderful  times  to  be learning logic, its history,  and its 

philosophy. His first logic teacher was Albert Hammond, who passed  

on  from  his  own  dissertation  supervisor  Arthur  Lovejoy  the  

tradition  of  the  history  of ideas—a  tradition  his  university,  Johns  

Hopkins  University,  was  known  for.  Corcoran  studied Plato  and  

Aristotle  with  Ludwig  Edelstein,  the  historian  of  Greek  science  

and  medicine  who taught  at the University and at the  School of 

Medicine. His next two logic teachers were both accomplished and 

knowledgeable symbolic  logicians: Joseph Ullian, a Quine PhD, and 

Richard Wiebe, a Benson Mates PhD who had studied with Carnap 

and Tarski.  

 

Corcoran’s  dissertation  supervisor,  his  “doctor  father”,  was  

Robert  McNaughton,  who had  already  established  himself  in  three  

fields:  the  metamathematics  of  number  theory,  the theory of 

formal languages, and the theory of automata. McNaughton 

encouraged Corcoran to do post-doctoral  studies  at  Yeshiva  

University  in  New  York  City  with  Raymond  Smullyan  and 

Martin Davis, both doctoral students of Alonzo Church. McNaughton 

later encouraged Corcoran to  go  to  UC  Berkeley,  the  world  center  

for  logic  and  methodology,  and  he  recommended  Corcoran  for  a  

Visiting  Lectureship  at  Berkeley.  McNaughton  was  also  

instrumental  in Corcoran’s  move  to  his  first  tenure-track  position,  

in  Linguistics  at  the  University  of Pennsylvania,  where  
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McNaughton  was  a  Professor  of  Computer  and  Information  

Science.  In those  early  years  Corcoran  also  attended  semester-

long  courses  and  seminars  by  several  other logicians, including 

John Addison, a Stephen Kleene PhD, Leon Henkin,  another Church 

PhD, and John Myhill, another Quine PhD. Corcoran often mentions 

his teachers with great  respect and warmth. 

 

3. History of Logic 

 

Corcoran’s work in history of logic involves most of the discipline’s 

productive periods.  His approach to history has evolved but he still 

holds to the  basic principles outlined  in  his  1974  article  “Future  

research  on  ancient  theories  of  communication  and reasoning”.  

He  has  discussed  Aristotle,  the  Stoics,  William  of  Ockham,  

Giovanni  Girolamo Saccheri,  George  Boole,  Charles  Pierce,  

Richard  Dedekind,  Giuseppe  Peano,  Gottlob  Frege , Bertrand 

Russell, the American Postulate Theorists, David Hilbert, C. I. Lewis, 

Jan Łukasiewicz , Stanisław Jaskowski, Alfred Tarski, Willard Van 

Orman Quine, Warren Goldfarb, and others.  

 

4. Aristotle 

 

His 1972 work  on Aristotle’s logic of the  Prior Analytics,  

considered radical at the time,  came  to  be  regarded  as  faithful  

both  to  the  Greek  text  and  the  historical  context.  It  was adopted  

for  the  1989  translation  of  the  Prior  Analytics  by  Robin  Smith  

and  for  the  2009 translation  of  the  Prior  Analytics  Book  A  by  

Gisela  Striker.  His  2009  article  “Aristotle’s demonstrative  logic”  

presents  to  a  broad  audience  an  amended  and  refined  version  of  

the philosophical  and  historical  consequences  of  the  1972  work  

without  the  mathematics.  His interpretation  of  Aristotle’s  Prior  

Analytics,  proposed  independently  by  Timothy  Smiley  of 

Cambridge University at about the same time, has been instrumental 

in subsequent investigations by several scholars including George 

Boger, Newton da Costa, Catarina Dutilh, Kevin Flannery, John 

Martin, Mario Mignucci, Michael Scanlan, Robin Smith, and others. 
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5. Boole 

 

His  controversial  1980 critical reconstruction of Boole’s original  

1847 system revealed previously  unnoticed  gaps  and  errors  in  

Boole’s  work  and,  moreover,  it  established  the essentially  

Aristotelian  basis  of  Boole’s  philosophy  of  logic  thus  

undermining  the  groundless opinion  that  Boole  sought  to  refute  

Aristotle.  In  a  2003  article  he  provided  a  systematic comparison  

and  critical  evaluation  of  Aristotelian  logic  and  Boolean  logic.  A  

series  of  his abstracts  and  articles  reveal  the  richness  of  Boole’s  

fertile  imagination  and  his  previously unrecognized  philosophical  

depth.  For  example,  his  2005  article  shows  the  connections  of 

Boole’s 1847 Principle of Wholistic Reference to doctrines later 

proposed by Frege and then,  in a more modern setting, by Quine. 

 

6. Tarski 

 

In  the  late  1970s  and  early  1980s,  he  worked  with  Alfred  Tarski  

on  editing  and correcting Tarski’s classic 1956 collection Logic, 

Semantics, Metamathematics, which includes the famous truth-

definition paper.  The  new edition  appeared in 1983 with Corcoran’s 

Editor’s Introduction.  In  1991  Mathematical  Reviews  invited  him  

to  review  Alfred  Tarski’s  Collected Papers,  4  vols. (1986).  His 

collaboration with  Tarski  resulted in  publications on Tarski’s work 

including the 2007 article “Notes on the Founding of Logics and 

Metalogic: Aristotle, Boole, and Tarski”  which  traces  Aristotelian  

and  Boolean  ideas  in  Tarski’s  work  and  which  confirms Tarski’s 

status as a founding figure in logic on a par with Aristotle and Boole. 

 

7. Mathematical Logic 

 

His  mathematical  logic  treats  propositional  logics,  modal  logics,  

identity logics,  syllogistic  logics,  standard  first-order  logics,  the  

first-order  logic  of  variable-binding term-operators, second-order 

logics, categoricity, definitional equivalence,  model theory, and the 

theory  of  strings—a  discipline  first  axiomatized  in  Tarski’s  1933  

truth-definition  paper.  The theory of strings, also known as 
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concatenation theory and as abstract syntax,   is foundational in all 

areas of logic. Corcoran’s work in string theory dates to his earliest 

meetings  as a graduate student with McNaughton who was then 

applying string theory to computer science and formal linguistics. 

String theory provides essential background for all of Corcoran’s  

other mathematical work and it plays a seminal role in his philosophy. 

 

8. Philosophy 

 

In all of Corcoran’s philosophy, especially his philosophy of 

mathematics,  he has been guided by a nuanced and inclusionary 

Platonism which strives to do justice to all aspects of mathematical,  

logical,  and  linguistic  experience  including  those  aspects  

emphasized  by competing  philosophical  perspectives  such  as  

logicism,  constructivism,  deductivism,  and formalism.  All of his 

work is grounded in the classical two-valued logic that was codified in 

the 1900s,  often  but  not  exclusively  standard  first-order  logic.  

Non-standard  logics  have  little relevance to his thinking.  

 

Although several of his philosophical papers presuppose little 

history or mathematics, his historical papers often involve either 

original philosophy (e.g. his 2006  article “Schemata”) or original  

mathematics  (e.g.  his  1980  article  “Categoricity”)  and  his  

mathematical  papers sometimes contain original history  or 

philosophy (e.g. the 1974  article “String theory”). He has referred to 

the mathematical dimension of his approach to history as 

mathematical archaeology.  

 

His philosophical papers often involve original historical research. 

He has also been guided by the Aristotelian principle that the nature of 

modern thought is sometimes fruitfully understood in light of its 

historical development, a lesson that Corcoran attributes to Arthur 

Lovejoy’s History of  Ideas  Program  at  Johns  Hopkins  University.  

Corcoran’s  attempt  to  integrate  philosophy, mathematics, 

linguistics, logic,  and  history had  been encouraged  for many years  

by  his Buffalo colleagues, especially the late American philosopher 

and historian Peter Hare. 



162            John Corcoran 

9. Acknowledgements 

 

Roger Bissell, Lynn Corcoran, William Demopoulos, Idris Samawi 

Hamid, Allen Hazen, Hassan Masoud, Kristo Miettinen, Joaquin 

Miller, Mary Mulhern, Frango Nabrasa, Paliath Narendran, Woosuk 

Park, José Miguel Sagüillo, Michael Scanlan, Jeffrey Welaish, and 

others. 

 

References 

 
1972. Completeness of an ancient logic, Journal of Symbolic Logic 37, 696–

702.  
 

1973. Gaps between logical theory and mathematical practice. 

Methodological Unity of Science, Ed. Mario Bunge. Reidel. 23–50. 
 

1974. Future research on ancient theories of communication and reasoning. 

Ancient Logic and Its Modern Interpretations, Ed. John Corcoran. Reidel.  

185–187.  MR0497848 
 

1974. String theory. (Co-authors: William Frank, Michael Maloney). Journal 

of Symbolic Logic 39, 625–37.  
 

1980. Categoricity. History and Philosophy of Logic 1, 187–207. 
 

1980. Boole's Criteria of validity and invalidity. (Co-author: S. Wood). 

Notre Dame Journal of Formal Logic 21, 609–39.  
 

1983. Editor's introduction to the revised edition.  Logic, Semantics, 

Metamathematics by Alfred Tarski, translated by J. H. Woodger. Hackett. 

MR85e:01065. 
 

1989. Argumentations and logic. Argumentation 3, 17–43. 
 

1991. Review: Alfred Tarski’s Collected Papers, 4 vols. (1986) edited by 

Steven Givant and Ralph McKenzie. Mathematical Reviews 91h:01101 
 

2003. Aristotle's Prior Analytics and Boole's Laws of Thought. History and 

Philosophy of Logic 24, 261–288. 
 

2005. Wholistic reference, truth-values, universe of discourse, and formal 

ontology: Manuscrito 28, 143–167. 



A LOGICIAN’S AUTOBIOGRAPHY      163 

 
 

 

2006. Schemata: the concept of schema in the history of logic. Bulletin of 

Symbolic Logic 12, 219–40.  
 

2007. Notes on the founding of logics and metalogic: Aristotle, Boole, and 

Tarski. Eds. C. Martínez et al. Current Topics in Logic and Analytic 

Philosophy / Temas Actuales de Lógica y Filosofía Analítica. Imprenta 

Univeridade Santiago de Compostela (University of Santiago de Compostela 

Press).145–178. 
 

2009. Aristotle's demonstrative logic. History and Philosophy of Logic 30, 

1–20. 
 

2015. Existential import today: New metatheorems; historical, 

philosophical, and pedagogical misconceptions. (Co-author: Hassan 

Masoud). History and Philosophy of Logic 36, 39–61.  
 

2017. Review of Paseau, Alexander, “Knowledge of mathematics without 

proof”. British J. Philos. Sci. 66 (2015), no. 4, 775–799. Mathematical 

Reviews. MR3427518. 

  



 

 
 

 

 

 

 

 

 

 
 

John Corcoran 

 

(Born 1937) 

 



 

 
 

 

 

 

 

 

 

 

PART 3 

 

LOGIC COMMUNITIES  
AROUND THE WORLD 

  



 

 
 

  



 

 
 

LOGIC IN BOGOTA: SOME NOTES 

 
Andres Villaveces 

 
In November of 2015 I had the chance to visit the IPM in Tehran for a 

few days. In addition to a minicourse in the model theory of Abstract 

Elementary Classes, I had an intense schedule of mathematical 

interaction with various members of the Institute. I was invited 

recently by Ali Sadegh Daghighi
1
 to offer for this special issue a 

personal perspective of the Bogotá Logic Group, and some 

connections and perceptions of my own visit to Tehran. These notes 

purport to do that.  

 

1. The Bogotá Logic Group - Origins 

 

1.1. Early Years 

 

Academic interest in contemporary mathematical logic had been part 

of the background of mathematics and philosophy departments of the 

local universities since the mid-1960s
2
 - there were some early reading 

seminars - but it wasn’t until the late 1970s that actual research in 

mathematical logic started being done in a systematic way by 

members of the local universities.  

 

The return to Colombia of model theorist Xavier Caicedo in 1977 

from his doctoral studies at the University of Maryland triggered the 

formation of a genuine group of people doing research in 

                                                           
1. I want to thank Ali Sadegh Daghighi for his invitation to write this memoir. I also 

want to thank the Tehran Logic Group for their very warm hospitality (and the great 

academic interactions) during my visit in November 2015. In particular, the work of 

Zaniar Ghadernezhad and Massoud Pourmahdian made possible that visit and the 

start of a very interesting academic interaction. 

 

2. Only the departments at Universidad Nacional and Universidad de los Andes, in 

those early years.  
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mathematical logic. The beginnings were slow (there was no research 

institute as such
1
, and research activities were barely organized in a 

systematic way back then) but sure-footed: after a few years, Caicedo 

had formed several Master’s students who went on to continue their 

doctoral formation abroad, and there was an active logic seminar. 

 

The role of the Latin American Mathematical Logic Symposia 

(known as SLALM by their initials in Spanish) was crucial in the 

consolidation of the group. Bogotá hosted (at Universidad de los 

Andes) the 5th SLALM in 1981 and in many ways this event may be 

regarded as marking the end of the beginning years and the opening a 

new phase. 

 

It is worth mentioning, anyway, that this first period is marked by 

both a beginning in isolation and a strong pull against this isolation: 

although research conditions were scarce (not only in terms of money 

but first and foremost in terms of organization) and logicians like 

Caicedo back then had to work in many simultaneous fronts 

combining research, teaching and administration, the existence of a 

genuine network of Latin American logicians provided a very 

interesting support even in those early days
2
. 

 

On a more personal note, some very solid friendships of logicians 

formed back then, at a Latin American level. In this regard, the role of 

set theorist Carlos Di Prisco was crucial for the consolidation of the 

group in Bogotá
3
. He was roughly at the same time developing the 

                                                           
1. Even in 2017, there is no independent research institute doing Mathematics in 

Colombia. All research in mathematical logic is conducted at the universities, by 

members of the faculty who must combine teaching basic courses, advanced 

courses, and doing research.  
 

2. The network has continued, as we shall see later. 

 

3. Di Prisco visited Bogotá as a mathematical logician first in 1981. Since then he 

visited many other times the city, giving lectures, minicourses, and in general 

bringing his interest in Combinatorial Set Theory to Bogotá. In more recent years he 

has been living in Bogotá in a more or less permanent basis, still doing logic and 

being part of the Logic Group, at Universidad de los Andes.  
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logic group in Caracas, the capital of our neighbour Venezuela, and 

his personal closeness to Caicedo and in general to the Logic Group of 

Bogotá enabled the growth and blossoming of both groups. The 

history of both logic groups became intertwined, to this very day. The 

effects of specific economic and political situations of the two 

countries have become part of the history of the two groups and their 

interactions. Other such friendships with logicians in other countries 

have also triggered similar developments, but the Caracas case is 

particularly close as an example of two different groups growing in 

parallel, in a symbiotic way.  

 

1.2. The group takes off and blossoms: 1980 to now. 

 

During the 1980s the group starts really becoming something more 

similar to what we have now: Caicedo guides students toward their 

Master’s programs
1
, and later some of these students return to 

Colombia (after their own doctoral studies abroad) and join the faculty 

at local universities
2
. 

 

The main venues of mathematical logic for a long time were 

Universidad de los Andes and Universidad Nacional. Caicedo was for 

many years professor at both universities. He split his research 

between both places. Until recently, the seminar was joint between the 

two universities—the number of students was growing but still small 

for a long time. 

 

Slowly, some of us returned to Bogotá and joined the faculties 

there, and later on started directing doctoral theses as well. This 

                                                           
1. It is worth mentioning that doctoral programs in Mathematics only started in 

Colombia in 1995, first at Universidad Nacional, and a few years later also at other 

universities including Universidad de los Andes. This is why all those early theses in 

Mathematical Logic were done in the context of Master’s studies.  
 

2. Among them, Sergio Fajardo finished his Master’s Thesis around 1979 and then 

went to the University of Wisconsin, where he worked with Keisler toward his 

doctoral thesis; he almost immediately returned to Colombia and was involved in 

research[5] and teaching until the late 1990s, when he became a prominent 

politician, now of national relevance.  
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triggered the start of research in mathematical at other universities of 

the city: the “hegemony” of Andes and Nacional slowly started being 

replaced by logic being slightly more distributed in various 

universities. This also started some diversifying of the topics and even 

of the style of research. 

 

The Bogotá Logic group slowly went from being very much a 

group of former students of Xavier Caicedo, and their own students 

and research associates (visitors from abroad as well) and started 

branching to other universities and other subjects. Today, the group 

has members at four or five universities, at least three research 

seminars each semester (many of them connected with the research 

being done by each one of us, often in connection with other parts of 

mathematics). A slight price tag of this new phase has been some 

atomization: we no longer have a centralized seminar on a regular 

basis. The reasons are compounded: geographic conditions, a high 

degree of research activity, combined with teaching duties and often 

administrative tasks by many of us. Activity in research is high but 

perhaps less centralized than earlier in the Group. 

 

2. Current Trends in the Bogota Logic Group 

 

2.1. Topics and style of current research in logic in Bogotá. 

 

The list of topics is simultaneously very “model-theory centered” (for 

the historic reasons explained above) and quite turned toward 

collaboration with other parts of mathematics (and more recently even 

with mathematical physics). 

 

Here is a brief and probably incomplete list of topics of research: 

 Abstract Model Theory: the early theses of the group had 

strong connection with abstract model theory questions 

(infinitary logic, interpolation properties, etc.). This was of 

course due to the interests of Caicedo back then. 
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 Model Theory of Sheaves: a bit later, during the 1980s, 

Caicedo developed his Model Theory of Sheaves[3]. 

Generalizing earlier results due to Macintyre and Comer, he 

developed a natural setting for his Generic Model Theorem for 

sheaves of first order structures over topological spaces
1
. 

 

 Algebraic Logic: a later development due to Caicedo and 

some of his students (Oostra) and collaborators. 

 

 Stability Theory: this deserves a very special place in the 

description of the activities of the Bogotá Logic Group in the 

past 15 years or so. The work of Alf Onshuus, Alex 

Berenstein, John Goodrick in NIP theories, geometric theories, 

amalgamation of types, etc. has prompted the Bogotá Logic 

Group to a very interesting place in the worldwide map of 

stability theory. The work of Onshuus (for his thesis with 

Scanlon) on thorn-forking has had major impact in the area. 

 

 Continuous Model Theory: Berenstein first brought the topic 

after his postdoctoral work in Illinois, where he co-wrote an 

important monograph on the subject[1]. He returned to Bogotá 

in 2005. One of his lines of research - involving also my own 

collaboration (later joint with Hyttinen)[2] and later our joint 

doctoral student Camilo Argoty (thesis on the model theory of 

representations of operator algebras, 2015), has been centered 

in continuous model theory. It is worth mentioning that 

Caicedo has combined Abstract Model Theory with 

Continuous Model Theory in his work with José Iovino 

(another early student of his, now a professor in Texas). 

 

 Non-elementary classes: my own work since my return from 

my postdoc in Jerusalem has had a major center of work 

around the model theory of abstract elementary classes. Some 

results include the effect of categoricity upon stability (an early 

                                                           
1. This has been generalized by Caicedo himself and other people in Bogotá to 

various contexts. See [6]. 
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theorem with Shelah under extra assumptions), the study of the 

problem of uniqueness of limit models (with Grossberg and 

VanDieren) and later the work with my former student Pedro 

Zambrano on metric abstract elementary classes. More 

recently, together with Ghadernezhad, Mariano and Zambrano, 

a study of the connections with category theory has produced 

some interesting connections. 

 

 Combinatorial Set Theory: as mentioned above, Carlos Di 

Prisco originally from Caracas had a major role in the 

intertwining of the two groups. Since 2012 he lives in Bogotá 

and has brought research in combinatorial set theory to 

Universidad de los Andes. Additionally, my own work early 

after my return to Colombia and later Ramiro de la Vega’s 

work have had been centered in combinatorial set theory. 

 

 Connections between model theory and set theory: this was 

my own starting point and I have always kept some active 

research in the field. More recently this has been revived by 

new results in AECs and Large Cardinals. 

 

 Applications outside logic: this has happened in various 

ways. For a while Luis Jaime Corredor (an early student of 

Caicedo) worked in the large project of Groups of Finite 

Morley Rank. Onshuus has also worked in applications to 

statistics and more recently to Berkovich spaces. My own 

recent work is geared toward applications of sheaves and 

AECs to Quantum Mechanics[7]. 

 

 Philosophy and History of Mathematics/Logic: the work of 

yet another member of the Logic Group, Fernando Zalamea, in 

the past two decades has been strongly geared toward the 

Philosophy of Mathematics. Zalamea started out in logic (as a 

student of Caicedo and then a doctoral thesis in categorical 

logic from U-Massachussets) but has steadily become one of 

the main references in the philosophy of mathematics (studies 

in Peirce, Grothendieck and mainly his Synthetic Philosophy 
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of Contemporary Mathematics). Other members of the group 

(recently, myself) have also worked along these lines. 

2.2. Some positive points. 

 

The paragraphs above show some healthy variety of topics, as well as 

some interaction with other areas of mathematics. It is worth 

mentioning here that the Logic Group, although started essentially by 

Caicedo, has never become isolated unto itself. The Bogotá group has 

strong connections with logicians at (at least) Carnegie Mellon 

University, Berkeley, Wisconsin, UIC and CUNY in the United 

States; Paris, Lyon, Helsinki, Barcelona and Oxford in Europe; 

Jerusalem, Haifa, Istanbul and more recently the IPM in Tehran in the 

Middle East; Kobe in Japan; in addition to the more local connections 

in Caracas, Mexico City, Buenos Aires, Campinas and Sao Paulo. 

Students have benefited enormously from frequent visits to Bogotá by 

members of the logic groups of those cities, and faculty (and more 

recently also students) have often travelled to those cities, as part of 

joint research. 

 

The main positive point is the fact that, in spite of being 

geographically far from many centers of research, the Bogotá Logic 

Group is definitely not isolated in terms of research. 

 

2.3. Some problematic issues. 

 

A reader may notice the entire lack of some subareas of logic. A high 

percentage of the logic in Bogotá is model theory (pure or applied in 

some way), some of it is set-theory related; there is algebraic logic but 

there is very little else inside logic. No proof theory, very little in 

terms of connections with computer science. This may be a natural 

development of the group but I believe it would be healthy to have 

a more balanced logic group. 

 

Another point to notice is the high number of faculty (mentioned 

above) and relatively few students. Part of the reason is that our 

students tend to go for doctoral programs abroad. They seem to have a 
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strong formation in parts of logic (and in general in mathematics) and 

many still prefer to travel to study abroad. The lack of consistent 

funding at a local level is partially responsible for this. Additionally, 

we have very few foreign students here (although this is changing, at 

least at Universidad Nacional and Universidad de los Andes). We 

have had relatively few postdocs (two research postdocs: Sonat Suer 

and Zaniar Ghadernezhad in Universidad Nacional, and then a few 

more teaching postdocs at Universidad de los Andes). But so far the 

lack of a real research institute and the relative weakness of funding 

has delayed further growth of our logic group. 

 

3. Academic Connections with the IPM – Perspectives 

 

These closing lines offer some perspective in connection to my visit to 

the IPM in November 2015; some perceptions, some perspectives. 

Needless to say, a visit of a few weeks, no matter how intense it may 

be, offers only a very dim and general view of the place! This 

“blurrying” effect is made much deeper when, as was my case at the 

IPM, language is a barrier. My direct interaction was in English—not 

my original language and probably not the original language of my 

hosts. Some students who had questions had to ask them in Farsi, and 

somebody translated the interaction of questions and answers from 

Farsi to English to Farsi. 

 

So, with this caveat in mind, I now offer a very candid account of 

impressions during the visit in 2015.  

 

The first impression is of course the marvel of seeing a real 

research institute, in a good building located in a good area of Tehran, 

and with housing for visitors. This is something we still lack in 

Bogotá, as mentioned above! 

 

I understand that people I met combine faculty (researchers), 

postdoctoral fellows and students. I have no idea of the proportion of 

each, but I had the impression that the IPM in Tehran has the 

necessary budget for maintaining postdoctoral fellows and keeping up 

with the research. 
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A month before my visit, there had been a major conference, with 

many visitors from different parts of the world. Again, this reflects 

something crucial, and it is the strong pull against isolation. 

I have no idea of whether it is possible for non-Iranian nationals to 

become postdoctoral fellows. I have no idea what kind of 

requirements are there in that sense. My (superficial) impression is 

that all the people I met were Iranians, at least everyone actually living 

in Tehran and connected with the IPM. Of course, I may be quite 

wrong. 

 

The eagerness of students to ask questions, to engage in 

conversation, is something wonderful in Tehran, and I have very good 

memory of various academic interactions after my lectures. 

 

What is more difficult these days, for geo-political reasons, is 

collaboration with other countries (travel, visas). We in Colombia for 

a long time were also partially affected by similar things; it is only 

very recently that those restrictions have been reduced. I was glad to 

see that people do travel a lot (to countries where that is possible) 

academically from Iran, and that they invite different people. 

 

In the case of the Bogotá Logic Group, the collaboration with the 

IPM really started with Zaniar Ghadernezhad’s postdoctoral visit to 

Bogotá (for almost a year), right after his doctoral studies in Münster 

(Germany). He had impact in our local logic life (a minicourse on 

Hrushovski constructions, work with several of us, including our 

paper[4]. 

 

After my own visit in 2015, two other members of the Bogotá 

Logic Group have had the chance of visiting the IPM in Tehran: 

Camilo Argoty (who worked with Berenstein and myself in his 

doctoral thesis) and Darío Alejandro García (a former student of 

Onshuus). 

There is strong potential for a continuation of these efforts. The 

IPM’s topics of research, as far as I can see, are strongly compatible 

with our own topics of research in Bogotá. 
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An agreement of academic collaboration was signed formally 

between the government of Iran and Universidad Nacional de 

Colombia just a few months ago. It may be possible to use this to 

further deepen our academic ties in Mathematical Logic. 
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THE LOGIC GROUP AT NATIONAL UNIVERSITY 

OF SINGAPORE: A PERSONAL VIEW  

 
Yang Yue 

 
I have been working in the department of mathematics at the National 

University of Singapore (NUS) for more than 20 years.
1
 Mr. Ali 

Sadegh Daghighi, the editor of the Amirkabir Logic Group’s special 

issue for 5th Annual Conference of the Iranian Association for Logic 

(IAL), wanted me to “introduce the logic group at the National 

University of Singapore” to the members of IAL and asked me to 

“provide a survey of activities in the Logic Group at National 

University of Singapore”.   

 

This request gives me both pleasure and anxiety. On the one hand, 

I am very happy to take this opportunity to have more 

communications with fellow logicians in Iran; on the other hand, it 

would need a major effort to write any survey satisfying the minimum 

standard.  Therefore, what I can do is to provide some facts that I 

know of.  It is likely to be subjective and perhaps only reflects a tiny 

fragment of the complete picture.  

 

The National University of Singapore was founded in 1905.  Its 

latest phase of expansion was in 1980, when Singapore government 

merged the University of Singapore and Nanyang University to form 

the NUS.  Since then the government has been putting tremendous 

amount of funding and effort to improve the quality of higher 

education in Singapore.   

 

One cannot describe the development of the logic group without 

talking about the general growth of the mathematics department and 

the university.  Even before the merger in 1980, the university had 

                                                           
1. Yang Yue joined the National University of Singapore (NUS) at the end of 1992.  

His research area is mathematical logic, in particular, recursion theory and reverse 

mathematics. 
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systematically sent its students overseas for graduate studies and then 

appointed them to the faculty upon completion of the PhD. Since the 

1980s, the hiring in all fields has become more international and 

competitive.  

 

When I joined NUS in 1992, the logic group at NUS was already 

well-established.  The first Southeast Asian Conference in 

Mathematical Logic was held at NUS in 1981, which today is 

recognized to be the inaugural meeting of the Asian Logic Conference 

series.   

 

The mathematics department in 1992 had two logicians (in the 

narrow sense), Chong Chitat and Feng Qi; and as far as I know, there 

were previously two other logicians with the department, both of them 

are recursion theorists: Rodney G. Downey from 1983 to 1985 and 

Joseph K. Mourad from 1988 to 1992.  Rod Downey moved to the 

Victoria University of Wellington, New Zealand
1
and Joe Mourad 

returned to the United States.   

 

Chong Chitat began his career in NUS as a Lecturer in 1974.  He 

is definitely the most influential figure in the logic group.  Not only 

did he have a vast amount of administrative experience at all levels 

(department, faculty and university), he also has a unified view of 

mathematical logic and of its role in mathematics. He is a recursion 

theorist, but his research topics cover all aspects of computation: From 

classical Turing degree theory to higher recursion theory, fragments of 

arithmetic, reverse mathematics, computation theory of the reals 

applied to complex dynamics, and higher randomness.   

 

Feng Qi is a set theorist whose research areas include inner model 

theory and large cardinals.  Together with Magidor and Woodin, he 

introduced the notion of universally Baire sets, which is fundamental 

in the study of large cardinals.  In 1997, Feng Qi returned to China.  

                                                           
1. There will be workshops in both New Zealand and Singapore in honour of Rod 

Downey’s 60th birthday. See the following websites for more details: 

http://sms.victoria.ac.nz/Events/CCS2017/WebHome   

http://www2.ims.nus.edu.sg/Programs/017asp/index.php   

http://sms.victoria.ac.nz/Events/CCS2017/WebHome
http://www2.ims.nus.edu.sg/Programs/017asp/index.php
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From 2007 to 2013 he held a joint position at both Chinese Academy 

of Sciences and NUS.  His influence and experience in both China and 

Singapore left a strong mark on the graduate study program of logic in 

NUS and the Summer School at the Institute for Mathematical 

Sciences (IMS), both of which I will say more in a moment. 

 

Currently, NUS has four logicians in the mathematics department: 

Chong Chitat, Dilip Raghavan, Frank Stephan and Yang Yue. Frank 

Stephan joined NUS in 2004, he is holding a joint appointment in 

mathematics and computer science.  His research interests include 

recursion theory and algorithmic randomness; learning theory, in 

particular inductive inference; computational complexity; and 

automata and formal languages, in particular automatic structures.  His 

most cited result says that every PA-complete Martin-Löf random set 

already computes the halting problem, which revealed the connection 

between random sets and their computational power.  

 

Dilip Raghavan joined NUS in 2012.  He won the Sacks Prize of 

Association of Symbolic Logic in 2008, which is a prize awarded for 

the most outstanding doctoral dissertation in mathematical logic.  His 

research area is set theory, in particular, forcing axioms, cardinal 

invariance, and infinitary combinatorics.   

 

Besides logicians in the mathematics department, there are 

colleagues working in logic related areas in the School of Computing 

and in the department of philosophy. 

 

I should mention that there is an active research group in logic at 

the Nanyang Technological University (NTU), even though my article 

is about NUS.  NTU is a much younger university in Singapore, yet it 

has done extremely well and has become a serious competitor to NUS.  

There are two excellent recursion theorists in NTU, Guohua Wu and 

Keng Meng Ng. We often hold logic related events together.   

 

The research group in NUS has international collaborations with 

logicians all over the world.  Due to historical reasons, the connection 

with the Chinese logic community is particularly strong. An 
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incomplete coauthor count would include logicians (besides China and 

Singapore) in Australia, Canada, Germany, India, Iran, Israel, Italy, 

Japan, Kazakhstan, New Zealand, Russia, United Kingdom and 

United States.   

 

Now I turn to the education programs of mathematical logic in 

NUS.  In the undergraduate curriculum, we have two logic courses.  

One is Set Theory which covers Zermelo-Fraenkal axioms, basic facts 

about cardinal and ordinal numbers, and the equivalent forms and 

applications of the Axiom of Choice. The other is Mathematical Logic 

which covers the basic syntax and semantics of first-order logic and 

Gödel’s completeness theorem.   

 

The department of mathematics used to offer two other courses on 

the theory of computation which covered regular and context-free 

languages, Turing machines and computational complexity.  These 

courses are now listed under the School of Computing undergraduate 

programme, but students in mathematics can take them without any 

problem.  

 

Although NUS awarded its first PhD degree in mathematics in 

1964, it was not until the 1990s that the department of mathematics set 

up its graduate program.  Unlike countries like Iran, Singapore is a 

very small country having very limited academic positions.  For 

mathematics in general and for logic in particular, it is very hard to 

recruit graduate students and difficult for the degree holders to find a 

research related job in Singapore.   

 

Luckily, NUS and the mathematics department realized that 

having a solid graduate program is vital to scientific research in the 

university, and is an indispensable part of the “academic eco-system” 

within the NUS.  Hence the university has been actively recruiting 

graduate students from all over the world.
1
 

                                                           
1. People who are interested in graduate studies in NUS may find more information 

at our website http://ww1.math.nus.edu.sg/graduates.aspx; for applicants from many 

countries including Iran, Singapore government has a special fellowship SINGA, 

see: http://www.a-star.edu.sg/singa-award/Homepage.aspx.    

http://www.a-star.edu.sg/singa-award/Homepage.aspx
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A typical logic graduate student will spend 4 to 5 years to 

complete the PhD study.  The first two years are devoted to course 

work. Besides the basic requirements for every Ph.D candidate, such 

as real and complex analysis and abstract algebra, a logic student will 

also take the following four logic courses: Logic and Foundation of 

Mathematics I and II, which focus on Gödel’s incompleteness 

theorems and the independence of Cantor’s continuum hypothesis 

(Gödel’s L and Cohen’s forcing method), respectively; Recursion 

Theory, which covers construction techniques such as forcing in 

arithmetic and priority methods; and Model Theory, which focuses on 

Morley’s categoricity theorem.  The first two courses are intended for 

graduate students in general, and often attract mathematics graduate 

students outside logic and students from computer science.   

 

After taking the courses, the candidate must pass his/her 

qualifying exams (written exams on topics in Analysis and Algebra; 

oral exams on specialized topics in logic) within the first two years.  

The remaining two or three years will be devoted to writing a 

doctorate thesis.  The department also requires graduate students to 

conduct tutorials or grade undergraduate homework exercises. 

Therefore a basic proficiency in English, which is the language of 

instruction in NUS, is required. So far the NUS logic program has 

produced about 10 doctorates.  Most of them have either taken up 

research or teaching positions at universities in China, or postdoctoral 

positions in Europe and North America.  Currently, there are 4 

graduate students in logic.  

 

Finally I would like to talk about the IMS and its summer schools 

in logic.  IMS was established in 2000 as a university-level research 

institute.  Its mission is “to foster mathematical research, to nurture the 

growth of mathematical expertise among research scientists, to train 

talent for research in the mathematical sciences, and to serve as a 

platform for research interaction between the scientific community in 

Singapore and the wider international community”. The IMS Graduate 

Summer School in Logic was started in 2006, whose objective was to 

“bridge the gap between a general graduate education in mathematical 
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logic and the specific preparation necessary to do research on 

problems of current interest in the subject”.  

While a majority of the participants will be graduate students, the 

summer school also attracts postdoctoral scholars and researchers.  

From the beginning, we were fortunate to receive the support of two 

eminent logicians, Theodore A. Slaman and W. Hugh Woodin, both of 

the University of California at Berkeley
1
. Over the past ten years, they 

have delivered excellent lectures on recursion theory and set theory 

respectively.  Within a series of ten lectures, they bring the students 

from the standard textbook material all the way to the frontier of 

current research.  They also helped to invite other experts in all areas 

of logic to give lectures. We hope that the IMS logic summer school 

can continue to train logicians of the next generation. Since 2013, we 

have had Iranian students attending every year.  We expect to have 

Iranian students this year too.
2
 

 

I hope that the logic communities in Iran and in Singapore have 

more collaborations in future.  I wish the 5
th

 Annual National 

Conference of IAL a success. 

  

                                                           
1. W.Hugh Woodin is now at Harvard University. 

 

2. The 2017 summer school is from 19 June to 7 July.  The speakers are (tentatively) 

Artem Chernikov, Theodore Slaman and W.Hugh Woodin. See 

http://www2.ims.nus.edu.sg/Programs/017logicss/index.php  for more details.  

http://www2.ims.nus.edu.sg/Programs/017logicss/index.php


 

 
 

WOMEN IN LOGIC: WHAT, HOW & WHY 

 
Valeria De Paiva 

 
1. Houston, we have a problem... 
 

The Association of Symbolic Logic (ASL) clearly states in its 

webpage:  

 

Logic benefits when it draws from the largest and most 

diverse possible pool of available talent.[...] Female 

students and young researchers may be concerned 

about entering logic, where few senior women occupy 

visible roles. The atmosphere in classes and seminars 

can feel unwelcoming, and many young women have 

practical questions about managing a career and 

personal interests. 

 

We, just as much as the ASL, would like to add our voice to the 

growing list of initiatives launched by organizations in the various 

science, technology, engineering, philosophy and mathematics fields 

aimed at correcting the gender imbalance in our field. 

 

To help on this effort, we are holding the first workshop on 

"Women in Logic" (WiL) as a LiCS (Logic in Computer Science) 

associated workshop in 2017. The workshop intends to follow the 

pattern of meetings such as "Women in Machine Learning" or 

"Women in Engineering" or "Women in Computability" that have 

been taking place for quite a few years. Friends and collaborators 

mentioned how useful these meetings were. 

 

2. Why Women in Logic? 

 

Women are chronically underrepresented in academia, and specially in 

the LiCS community; consequently they sometimes feel both 

conspicuous and isolated, and hence there is a risk that the under-
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representation is self-perpetuating. (It is notable that many 

intellectually-neighbouring areas of both computer science and 

mathematics have more women in them, leading to suspicion that 

the phenomenon is indeed social.) The workshop will provide an 

opportunity for women in the field to increase awareness of one 

another and one another's work, to combat the feeling of isolation. It 

will also provide an environment where women can present to an 

audience comprising mostly women, replicating the experience that 

most men have at most LICS meetings, and lowering the stress of the 

occasion; we hope that this will be particularly attractive to early-

career women. 

 

Topics of interest of this workshop include but are not limited to 

the usual Logic in Computer Science topics, including automata 

theory, automated deduction, categorical models and logics, 

concurrency and distributed computation, constraint programming, 

constructive mathematics, database theory, decision procedures, 

description logics, domain theory, finite model theory, formal aspects 

of program analysis, formal methods, foundations of computability, 

programming language semantics, proof theory, real-time systems, 

reasoning about security and privacy, rewriting, type systems and type 

theory, and verification, amongst others. 

 

3. Women in Logic: the workshop 

 

The webpage for the workshop is at: 

https://sites.google.com/site/firstwomeninlogicworkshop/home  

 

Please submit your paper! Our goal is to enhance the experience of 

women in logic in computer science, and thereby increase the number 

of women in the field, help women in logic succeed professionally, 

and increase the impact of women in our community. 

 

We also want to work to increase awareness and appreciation of 

the achievements of women in logic and in computer science in 

general.  

 

https://sites.google.com/site/firstwomeninlogicworkshop/home


WOMEN IN LOGIC: WHAT, HOW & WHY       185 

 
 

We hope our workshop will help women build their technical 

confidence and that this publicity effort will help ensure that women 

in logic and computer science and their achievements are known in the 

community. 

 

4. Our Initiative 

 

We also have a Facebook group, where we share some experiences 

and news:  

https://www.facebook.com/groups/WomenInLogic/  

 

and a blog:  

http://womeninlogic.blogspot.com/  

 

where we try to discuss issues that need our attention. Everyone is 

welcome to suggest posts for the blog and to post relevant material in 

the group. 

 

  

https://www.facebook.com/groups/WomenInLogic/
http://womeninlogic.blogspot.com/
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SEMANTICS IN LOGIC AND COGNITION 

 
Vadim Kulikov 

 
1. Introduction 

 

Philosophers have tried to understand the human mind for ages. One 

of the central problems is meaning and mental representation. What 

does it mean for symbols to have meaning? Do symbols need to have 

it? How can symbols refer to objects in the outside world, if the agent 

doesn't have access to the outside world and only has access to the 

symbols? How can symbols refer to concepts that are not grounded in 

sensory perception (e.g. abstract concepts such as Hilbert space)? How 

can an agent judge the truth of various symbolic statements? What are 

representations and how are they different from symbols? What is 

perception? Is perception inherently meaningful or contentful? What 

is the difference between representation, perception and sensation? 

 

Logic originated as the study of reasoning, but nowadays it does 

not seem to play a crucial role in solving these philosophical 

problems. Logicians talk about semantics in their work, but it is not 

the semantics we are interested in here, see Section 3.1. In this essay I 

want to suggest that logic must stop being ambivalent to these issues. I 

believe that logic has the potential to provide a unifying framework 

for dealing with questions in philosophy of mind, especially those 

concerned with meaning and truth.  

 

2. Motivation 

 

2.1 The Problem of Meaning in Cognitive Agents 

 

Consider a robot which, at the basic level, only processes two 

symbols: 0 and 1. We know that our computers process only those at 

the core. Can such a robot ever understand that there are other entities 

in the world other than patterns of 0's and 1's? Can it ever understand 
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that these patterns can refer to some other things in the external 

world? Can it understand that the external world exists and that 0's and 

1's are merely a method to communicate information about it? Will it 

get to a level where it even forgets about the individual 0's and 1's and 

starts operating at a higher level of consciousness? It appears that 

humans do all this despite that at the core our brains only operate with 

action potentials which are essentially digital information carriers, i.e. 

our own brains seem to suggest that it is indeed possible. But how? 

 

In cognitive science this is known as the symbol grounding 

problem and one way to briey present its history is the following. In 

1974 T. Nagel argued that the nature and quality of subjective 

meaning and phenomenology is hardly accessible by rigorous 

scientific methodology [19]. This can be interpreted as saying that the 

meaning of a symbol is private for the interpreter and the connection 

between the meaning and the symbol is (scientifically) unclear (e.g. 

meaning of the word "love"). Further J. Searle introduced his famous 

Chinese room argument to show that A.I. which is based solely on 

symbol manipulation cannot have intrinsic meaning. This argument 

was further developed by Harnad who compared it to the problem of 

"Chinese-Chinese dictionary" for someone who doesn't know any 

Chinese characters [9]. This is when Harnad formulated the symbol 

grounding problem. The many attempts to solve it include theories of 

sensory-motor grounding [13], Wittgensteinian language games [24] 

and statistical symbol covariations [17] (which are also criticized on 

the grounds of the Chinese room problem). It has been argued, 

however, that all the existing approaches make a semantic 

commitment; that is, the designer or programmer inputs some 

meaning into the agent from outside on which the agent builds up the 

"autonomous" meaning, which is, alas, not autonomous anymore, 

because it is based on this in-built semantic commitment [5]. 

 

There is an analogous problem in the foundations of mathematics. 

Formulas of set theory seem to account for all of mathematics. But, as 

argued in Section 2.2, formulas (including, say, axioms of ZFC) by 

themselves are not sufficient to serve as a foundation for mathematics. 

One needs to explain where the meaning of the formulas comes from 
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and the answer is trickier than merely stating that it comes from the 

intuition we have about sets. Even if that was the answer, it is still not 

explained by set theory where such intuition comes from; an 

explanation of this requires cognitive science. See [16] for an attempt 

to understand this. 

 

2.2 The Problem of Meaning in the Set Theoretic Foundations of 

Mathematics 

 

ZFC and other set theoretic foundations are often motivated by saying 

that (A) the concepts of “set” and “inclusion” are very easy to explain 

and to back-up philosophically. They are semantically simple and it is 

possible to establish simple truths about them by which a recursive set 

of meaningful axioms can be motivated; and (B) almost all 

mathematics can be deduced from ZFC. Therefore (C) ZFC is a 

tractable and solid foundation. For example let us look at some quotes 

from set theory text books: 

 

This quote from Kunen's book supports (B): 

 

Working within ZFC, one develops: [...] All the 

mathematics found in basic texts on analysis, topology, 

algebra, etc. [15] 

 

An older book by Murray Eisenberg supporting (A): 

 

[One of the primary aims] is to explain systematically 

what the most basic and general objects of 

mathematics really are and why they behave as they 

do. [7] 

 

Supporting (B): 

 

Indeed, all mathematical entities can be represented as 

sets. [7] 
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A book by one of the founders of forcing, Azriel Levy, supporting 

(B): 

 

All branches of mathematics are developed, 

consciously or unconsciously, in set theory or in some 

part of it. .... We shall show how the concepts of 

ordered pair, relation and function, which are so basic 

in mathematics, can be developed within set theory. 
1
[18]. 

 

Jech's book which is also among the most popular text and 

reference books, exceptionally talks about ZFC as a foundation only 

for set theory, thus supporting not-(B): 

 

The axioms of ZFC are generally accepted as a correct 

formalisation of those principles that mathematicians 

apply when dealing with sets. 
2
[12] 

 

Supporting (B): 

 

[about the Dedekind-construction of the reals:] The 

arithmetisation of analysis, brought about by 

Dedekind, Weierstrass, and others, succeeded in 

developing an algebraically self-contained notion of 

real number without any appeal to geometric intuition. 
3
[10] 

 

                                                           
1. This citation strikes me as quite arrogant. Just because you can interpret all 

mathematics in sets does not mean that everyone who is doing mathematics is 

“consciously or unconsciously” doing set theory. Note that the set theoretic universe 

can be represented as a graph, but nobody is claiming that you are unconsciously 

doing graph theory when you are doing analysis.  
 
2. My emphasis 
  
3. I claim this is false: if it were really done "without any appeal to geometric 

intuition", then we wouldn't "know" that these objects are real numbers.  
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Again supporting (B): 

 

Among the many branches of modern mathematics set 

theory occupies a unique place: with a few rare 

exceptions the entities which are studied and analysed 

in mathematics may be regarded as certain particular 

sets or classes of objects. 
1
[25] 

 

Thus we can see that (A) and (B) are indeed widespreadly believed 

among set theorists. 

 

I am willing to accept (A): sets indeed are very easy to understand 

and are philosophically simple, or at least simpler than many other 

mathematical notions. There are some accounts on how the intuitions 

and semantics of sets might be grounded in human conceptual system 

[16]. As of (B), however, I claim that the reasoning is flawed. Even 

granted that sets and inclusions are semantically understood and 

granted that we can derive simple truths about them such as featured 

in the ZFC axioms, we still lack the semantic foundation for other 

mathematics. For example the semantics of the real number line 

remains a mystery. The reason is that there are no real numbers in the 

set theoretic universe. One might be asking "So what about the 

construction of the real line starting from natural numbers and ending 

with Dedekind cuts? Doesn't this prove the existence of the real 

number line in the set theoretic universe?" The main worry here is that 

the semantics do not transfer. If we use the classical construction of 

the reals to transfer the semantics from the primitive concepts (sets) to 

them, we get to the following, mildly speaking counter-intuitive 

situation:  

 

A real number is an infinite set of infinite sets of pairs 

of infinite sets of pairs of natural numbers - whatever 

"they" are. 

 

                                                           
1. I am curious what are the "rare exceptions" to the author. He doesn't seem to 

explain this in the book. 
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What we need to do after we construct real numbers from 

Dedekind cuts or equivalence classes of Cauchy sequences is that we 

attach semantics to the created set theoretic monster from outside. The 

semantics or the real line is not in-built or inherent in set theory. For a 

more thorough discussion of this topic see [14]. If the semantics of   

cannot be deduced from its definition (or construction) by relying to 

the primitive notions used in it, then how else can we obtain the 

semantics for it? How do we understand what is the real number line? 

The only possibility is that the semantics comes from outside. This in 

turn means that it is not sufficient to understand what a set is and what 

inclusion is in order to understand what real numbers are. 

 

3. Some Ways to Approach the Problem 

 

3.1 A Classical Logical Attempt: Tarskian Semantics? 

 

The Tarski definition of truth (TDT) specifies conditions under which 

a formula in a given formal language is true. I will argue that despite 

its usefulness within mathematics and mathematical logic, TDT does 

not provide us with sufficient tools to understand semantics in general. 

 

TDT depends on the function called the assignment which in our 

context can be considered the function which attaches meaning to 

symbols in the language. For example in the theory of graphs, the 

language         consists of one binary predicate and if           
is a graph (  is the set of vertices and       is the edge-relation), 

the assignment is the function      and       . Now from the 

TDT we can read that for example the sentence              is true 

if and only if for all      there exists      such that   is 

connected to  . Without knowing the meaning of  , i.e. the value of 

the assignment function, this evaluation of truth would be impossible.  

 

Moreover given the assignment, we still cannot evaluate the truth 

if we lack su_cient knowledge about   and  . Also notice that in this 

example, as usual, the vocabulary of the language is the same as the 

"vocabulary" of the structure. When I write "vocabulary" in quotes I 

mean the building blocks of the structure which a priori do not have 
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anything to do with a language, they are set theoretic objects like  -

ary relations. In TDT the sentence              is true if and only if 

it is true that for all   there is      such that          and it is 

not surprising that students find TDT circular for how can we define 

truth of a sentence in terms of truth of essentially the same sentence? 

 

To wrap up, I have identified some things which the TDT relies 

on: 

  

1. Semantics, realised as the assignment function,  

 

2. The knowledge of structure of the model, realised usually as 

a set theoretic construction (like       where        ), 

 

3. The building blocks of the model correspond nicely to the 

building blocks of the language (vocabulary vs. "vocabulary"). 

 

Suppose one wanted to apply the TDT outside mathematics to 

metamathematics, natural language or cognition. For 

metamathematics an example would be motivated already by (2) 

above: to know whether a sentence holds in a model, you need to 

know something about the model. But how can you know anything 

about the model? The model is specified usually as a set theoretic 

construction, so it boils down to figuring out whether some sentence 

in the language of set theory holds. But if we refuse to be pure 

formalists and boil the latter down to syntactic provability from ZFC, 

we probably want to have some semantics for our language of set 

theory. We can now metaphorically apply the Tarski's definition of 

truth and say that the e.g. sentence   = "          " is true in the 

language of set theory if and only if there exists an empty set. Now 

whetheror not empty set really exists is outside of the scope of ZFC. It 

is a philosophical question. One can prove   from ZFC and use it in 

other proofs, but its semantics remains outside of the scope of set 

theory so to speak. In order to figure out its "true" truth according to 

this interpretation of TDT one must have knowledge about the 

universe of sets. By (1) we need to be able to attach "actual sets" to 

the symbols on the paper and also know something about them. What 
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are these "actual sets"? The cleanest way to deal with this problem is 

to assume the Platonic universe of sets. The problem of (3) is now 

solved, if we assume that the Platonic universe of sets is based on the 

 -relation. However, the epistemic problem remains: how can we 

know anything about the true universe of sets? How do we even know 

that any sentence that we formulate in the formal language 

corresponds to something meaningful in the universe of sets? This is 

the problem posed by (1): where do we get the semantic assignment 

function from? It is usually assumed to be one of the defining 

properties of the Platonic universe, that we can meaningfully talk 

(prior to truth evaluation) about it with formulas of set theory, but I 

find it to be a separate philosophical issue here. In fact the problems 

with semantics in ZFC goes even deeper than this, see Section 2.2. 

 

In natural language one could metaphorically adapt TDT and say 

that the sentence "snow is white" is true if snow is white. This poses 

several problems. It tells us what "snow is white" means, namely that 

snow is white, but it does not tell us what snow is white means, so 

ultimately it doesn't solve the problem of meaning. Is "white" even an 

objective property of physical objects? Can it be measured? There are 

reasons to claim that it cannot: it is easy to produce situations where 

the same wavelength produces different phenomenological colour 

experiences. Consider for example the White's illusion in which the 

grey rectangles on the left look brighter than the ones on the right [1]: 
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But even if we could measure is, for example if instead of colour 

we talked about temperature, like in the sentence "snow is less than 0 

degrees Celsius", it is still not evident that we are talking about 

temperature in the world, because we may be just talking about the 

outcomes of our measurements. This addresses the problem of the 

domain of discourse, namely the TDT requires the well defined targets 

for the assignment mappings and it is not clear that we have this. But 

even if we have it, namely the well-defined set of references, it is still 

unclear how is the assignment mapping defined and how do we 

evaluate truths about the references. TDT only tells us how to define 

the truth of a sentence given that we have already defined conceptual 

truth of what is the case in the world. 

 

This brings us to cognitive semantics. I can, at will, imagine that 

there is a tiger in my kitchen, or I can imagine my kitchen without a 

tiger. How is the truth value of these states, or representations, 

determined? The TDT approach suggests that the first is false, because 

there is no tiger in my kitchen and the second is true, because of the 

exact same reason. But this doesn't explain how do I know whether 

there is a tiger in the kitchen or not; how is the tiger in my imagination 

related to real tigers and what such a relationship means if there is no 

actual tiger in the vicinity; how did I form the mental representations 

in the _rst place and why do they seem meaningful even though the 

reference is lacking (there is no tiger)? Recall the thought experiment 

with the robot from Section 2.1. The TDT approach does not tell us 

how does the robot even know that there is anything other than 

patterns of 0's and 1's in the universe and even if it knows that, how 

does it attach those patterns to other things in the world, be it its own 

representations or actual external objects in the world. 

 

There is another intriguing - at first glance - aspect of the TDT 

approach to truth. Namely the Tarski theorem about the non-

definability of truth. It is sometimes taken to imply that in a cognitive 

system "truth" cannot be defined from within, but must be coming 

from outside, thereby killing the research objective of this paper. I 

claim that this argument, however, is missing the point. Suppose first 

that we were interested in defining the truth only for formulas of 
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quantifier rank       , or maybe even only for formulas with 

bounded quantifiers and maybe even bounded by some large natural 

number. Defining truth for these formulas would be, for our practical 

purposes, enough. The problem, however, is not whether we can 

define truth in principle or not. The problem is that even given a 

formula that "defines truth", how do we know that this is the truth? 

Note that the truth is "defined" as a subset of natural numbers (which 

requires semantics in the first place) and it requires an external 

observer to interpret the numbers as formulas and check that they 

indeed correspond to true formulas and we get back to the problem 

with semantics in metamathematics. 

 

To conclude, the Tarski definition of truth is a useful mathematical 

tool to produce invariants and to mathematically talk about formal 

truth. But its philosophy hardly extends beyond mathematical practice. 

 

3.2 Semantic and Non-semantic Information: is there a 

difference? 

 

A theory of meaning is outlined by Eliasmith in [8]. In this theory, 

information is as understood in information theory through measures 

of covariation such as Shannon entropy. This theory proposes that any 

variable   in the nervous system is a representation of some variable   

in the world if and only if   and   stand in a covariate relationship 

with each other which could be measured for example as the 

conditional Shannon entropy of   given  . The problems of 

understanding meaning and semantics through Shannon information 

are numerous. For example if I have a dog allergy, then itching in my 

nose maybe in a covariate relationship with presence of a dog and so it 

is, according to this theory, a representation of a dog. Itching of a 

nose, namely, is certainly accompanied with specific neurological 

activity as well, thus fitting the definition of neurosemantics. Another 

problem is that in order to know whether your variables are covarying 

with something in the world, you need to know what is in the world, 

which makes the problem similar to that of Tarskian semantics. It 

works only if you assume that you have access to some "objective" 

parameters in the world. 
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A completely different point of view is presented by the school of 

enactivists, especially Daniel Hutto and Erik Myin, [11]. They make a 

distinction between information that is merely carried as a pattern of 

covariation and information that has content. Content, according to 

Hutto, is constituted by conditions of satisfaction which may or may 

not be met. If I am imagining a tiger in my kitchen, this thought has 

content whether or not it stands in covariate relationship with the 

world, i.e. whether or not there is an actual tiger in my kitchen or not, 

because this thought constitutes conditions of covariation. 

 

Many other philosophers have proposed that there is a difference 

between semantically contentful information and mere information as 

understood in information theory, see e.g. [6]. 

 

3.3 Grounding Meaning in Sensorimotor Contingencies 

 

A common line of reasoning in the embodied cognition paradigm is 

that all or most cognition is grounded in the sensorimotor (SM) 

domain. Thus, Barsalou and colleagues argue [3, 2, 13, 4] that the 

meanings of concepts and words can be reduced to bodily sensations, 

actions and their combinations. Similarly Alva Noe and his colleagues 

argue [22, 20] that perception and mental representations are the result 

of SM contingencies (in fact they propose to replace the notion of 

representation by the one of SM contingencies). 

 

There are various problems here, especially when we want to 

ground meaning in the SM-domain. Recall the robot thought 

experiment described in Section 2.1. The SM domain of the robot 

consists of patterns of 0's and 1's. If it were to ground more abstract 

meaning in the SM-domain, it would require that there is some 

meaning in the SM-domain. Otherwise how can you ground meaning 

in something that is inherently meaningless? It becomes the same 

problem as Harnad called the "Chinese-Chinese dictionary" problem 

(see Section 2.1). Or in this case, I would re-name it to "Chinese-

Malaysian dictionary" problem, because the type of symbols is 

different, but there is still the problem of semantics.  
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Another problem is that this theory doesn't really explain abstract 

meaning. In the same way as the meaning of "real numbers" is not 

really grounded in the axioms of ZFC (even though you can construct 

an isomorphic copy within ZFC, see Section 2.2), the meaning of "real 

numbers", or lets say uncountable cardinals, is not grounded in the 

SM-domain even if there is a conceivable story on how (sometimes 

major) parts of intuition can be traced back to the SM-domain. 

 

3.4 Grounding Meaning Through Metaphors 

 

To attack the problem of abstract meaning, some cognitive scientists 

have resorted not to sensorimotor contingencies, but to the human 

mind's ability to treat metaphors and map content in metaphoric ways 

from one domain to another. In this view an infinite set, for instance, 

can be understood as the result of a potentially infinite process, where 

the "result of a process" is a applied in a metaphoric way from a 

domain where processes actually end [23, 16]. 

 

4. Questions for Logicians 

 

These are not mathematical questions but rather open ended 

philosophical questions whose anticipated solution lies in proper 

formalisation of mathematical modelling. 

 

1. One of the benefits of the Tarski definition of truth is that it 

formalises the distinction between syntax and semantics. Can 

we find a formalisation of the distinction between information 

in the Shannon sense and semantic information as described in 

Section 3.2? 

 

2. Can one formalise the "sensorimotor grounding" as a 

mathematical model which would show how meaning in one 

domain can emerge from meaning (or even from meaningless 

pattern covariations) in another domain? 

 

3. Can one formalise various models proposed in [23, 16, 21]: 

creating new concepts through metaphor blending? 
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4. Can it be that the abstract or formal models that solve the 

above two questions are somehow equivalent? Can these two 

approaches be special cases of a unifying logical framework to 

understand meaning? This would give an elegant account of 

both concrete and abstract meaning under one unifying 

framework. 

 

5. Apply a theory of meaning, either existing one or one that is 

inspired by the above questions, to create either a new 

foundation of mathematics, or complement the set theoretic 

foundations with the explanation of how does the semantics 

arise, see Section 2.2. 
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LOGICAL METHODS FOR THE 
VERIFICATION OF SOFTWARE MODELS 

       
Magdalena Widl 

 
The challenge of dealing with the increasing complexity of software 

systems has been anticipated as early as in Frederick Brooks' 1987 

seminal paper [3]. Soon after, David Harel responded to this challenge 

by underlining the importance of visual programming formalisms to 

mitigate this complexity. Indeed, today, visualization of software is 

almost omnipresent. Software models are used for many purposes 

such as requirements engineering, specification, communication, 

documentation, and, most recently, to automatically derive executable 

code within the new software development paradigm of model-driven 

engineering (MDE) [5, 12]. 

 

Usually, multi-view models are employed. Such models comprise 

a set of diagrams where each diagram describes a different view on 

the system, altogether providing a holistic representation. The most 

popular and widely-used modeling language for this purpose is the 

Unified Modeling Language (UML) [2], a standard that was 

established in 1997 out of a myriad of different modeling languages 

that were in use back then. Since the main applications of the UML 

were mostly informal, not much effort was spent for its formalization 

and so its semantics is still mainly specified in natural English 

language [7]. 

 

However, the shift from code-centric development to MDE 

requires a modeling language based on a solid formal semantics - a 

necessity, that is now considered one of the major current challenges 

in MDE research and in future improvements of the UML [4, 6]. A 

way to establish a formal semantics is to express properties of the 

modeling language in a logical formalism. Using a well-known 

formalism for this task has the immediate advantage that it makes the 

modeling language accessible for a wide range of users without the 

requirement of learning a new formalism. We previously used 
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propositional logic to describe the semantics of a modeling language 

[9, 13]. 

 

Further, the software models' new role as core development 

artifacts brings along stronger requirements on their consistency since 

errors introduced on the model level in the worst case result in faulty 

code. They are also central to the evolution of a software system, 

where they undergo continuous and often parallel modifications which 

are prone to cause inconsistencies between the views. Due to the size 

of the models, the consistency management is too cumbersome to be 

done manually [12]. Hence, automated methods are required [6]. Here, 

a second advantage of expressing the model semantics in a well-

known logic formalism comes into play: it allows to apply off-the-

shelf solvers to detect and resolve consistency problems in the models. 

Community efforts in improving solver performance directly impact 

the solving speed for the consistency problem. 

 

We previously applied propositional logic solve consistency 

problems of software models [8, 10, 9, 13]. In particular, we dealt with 

state machines and sequence diagrams. State machines model the 

behavior of a system in a reactive way. They respond to events, for 

example to the receipt of a message, by changing their states, and they 

create events in order to trigger other state machines. 

 

Sequence diagrams model a sequence of messages that are 

received and sent by state machines. A set of state machines may or 

may not implement such a sequence of messages. A set of sequence 

diagrams can be seen as a specification of a system and a set of state 

machines as the implementation of the system. The problems we dealt 

with were related to the question whether a set of state machines 

indeed implements the behavior modeled in a set of sequence 

diagrams, i.e., whether the two views are consistent. We showed all 

problems to be solvable in nondeterministic polynomial time (NP). 

Since we had already expressed the semantics of these models in 

propositional logic, we also encoded their consistency problems to the 

satisfiability problem of propositional logic (SAT) and used an off-

the-shelf SAT solver to find solutions. 
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In a future project, we plan to deal with the question of how to 

ensure model consistency in a similar way. However, we will deal 

with extended modeling concepts and go beyond mere consistency 

checking by proposing approaches for model synthesis and model 

repair. In particular, a question highly relevant in the practice of MDE 

is how to synthesize a system from a set of specifications, i.e., a 

system that is correct by construction. Again, the specification can be 

represented as a set of sequence diagrams and the system as a set of 

state machines. Similarly, a relevant question is how to repair a system 

that is inconsistent with a specification. 

 

These problems are likely to have a computational complexity that 

is above NP and hence, SAT-based approaches will not suffice due to 

the formula size of the encodings. A solution to this provide quantified 

Boolean formulas (QBFs), an extension of propositional formulas that 

allows to quantify propositional variables, or satisfiability modulo 

theories (SMT), an extension of propositional formulas by theories 

containing different fragments of first-order logic. Both approaches 

allow to compactly encode problems of complexity above NP. In 

particular, QBFs can be used for problems of different levels of the 

polynomial hierarchy (PH) [11] and SMT for problems of different 

complexites depending on the theory [1]. 
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SET THEORY FOR POETS,  
POETRY FOR SET THEORISTS

1 
       

William Flesch 

 
One modern incarnation of the debate between nominalism and 

realism is to be found in philosophical arguments about sets.  There 

are two ways of characterizing a set: intensionally, through 

description (e.g. the set of all inhabitants of London, to use an 

example of Russell's), and extensionally, which is just a list of the 

members of the set. 

 

Quine, as nominalist as they come, objected to the "ontological 

excesses of set theory" when construed intensionally.  Is there really 

such an entity as "all the inhabitants of London"?  Yes, there are 

inhabitants, and we, or God, or Facebook could list them.  Each is an 

entity him- or herself (let's stipulate, because who wouldn't?) 

 

The problem with extensional sets is that the vast, the utterly 

overwhelming majority of them would be utterly random, by our 

lights, like the contents of almost any book in Borges's "Library of 

Babel."  Those books are all (à très peu d'exceptions près) useless, and 

so too, more or less, would be thinking about things in sets.  The 

problem with intensional sets is that they may not exist (what is a set 

and where do I find one?), and even if some do exist, others might 

turn out to be impossible, despite seemingly innocuous descriptive 

criteria for membership. 

 

Nevertheless, set theory is not only obviously useful: it's obviously a 

way that people think about the world and make sense of it (or it's a 

formalization of how we think and make sense of the world).  "Natural 

kinds" for example really do rely on a concept of nature not unlike the 

nature that we live in, that we evolved to survive in.  And it seems too 

                                                           
1. The present article is available on the following website: 

http://arcade.stanford.edu/blogs/set-theory-poets-poetry-set-theorists    

http://arcade.stanford.edu/blogs/set-theory-poets-poetry-set-theorists
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that we find pleasure in finding sets, or figuring out what 

intensionally-characterized (or -characterizable) sets seemingly 

random extensional lists belong to. 

 

Just to reiterate: intensional is more or less synonymous with 

interesting.  To characterize a set intensionally is to say that its 

members share some interesting property—interesting enough that 

you don't have to list them. 

 

But here I want to focus on the converse idea as part of human 

literary or cultural play (as well as work): figuring out from a list what 

interesting set would embrace the items on that list.  It's true, of 

course, that a vast number of different interesting sets might embrace 

them, so we might want some further criteria of economy (this is also 

how Freud thinks about mental economy) for what the really 

interesting set is.  (That kind of economy is something like the 

criterion for a natural kind, and also for Wittgenstein's ideas about 

rule-following, which is for another post.) The criteria would not 

necessarily be pure efficiency, but a balance between specificity and 

pith.  Pithy specificity is what we're looking for, and we'll know it 

when we see it. 

 

Example: {raven, writing desk}. 

 

Now we're not really asking about this set itself.  We're asking about 

the set it's a subset of, but we're still looking for a pretty small set.  So 

items whose names in English start with the phoneme /r/ won't cut 

it.  Nor, probably will nouns with the letter n, nor objects smaller than 

an elephant, nor things that don't taste like rhubarb. They both belong 

to those sets, yes, and to many others too, but still. 

 

The two terms are, as every school child will remember, from a 

riddle by Lewis Carroll, which the Mad Hatter asks Alice.  He gives 

no answer, but later Carroll was prevailed upon to solve it.  He wrote: 

 

Enquiries have been so often addressed to me, as to 

whether any answer to the Hatter's Riddle can be 
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imagined, that I may as well put on record here what 

seems to me to be a fairly appropriate answer, viz: 

'Because it can produce a few notes, tho they are very 

flat; and it is nevar put with the wrong end in front!'  

 

This, however, is merely an afterthought; the Riddle, as originally 

invented, had no answer at all. As originally invented, then, it was 

offered as pure extension. 

 

Now other writers offered later answers.  Martin Gardner and The 

Straight Dope
1
 give some of the best, e.g., Poe wrote on both (Sam 

Loyd). (Cecil Adams of The Straight Dope also explains the 

misspelling nevar: it's a palindromic raven.) 

 

So the pleasure of riddles, of this kind of riddle, is the sudden collapse 

of extension into intension.  Sometimes that will require a 

reconceptualization of the elements in the extension: not "What's 

black and white and red all over?" no, but "What's black and white 

and read all over?"  The extension turns out to be the following set of 

qualities, denotable by adjectives and adjectival phrases: {black, 

white, read all over}. 

 

What does this have to do with poetry?  Well, in English, anyhow, 

rhymes are to be distinguished from inflections.  We don't (really) 

count unity and disunity as a rhyme; motion and emotion are too close 

to each other.  As Wimsatt argues, the best rhymes will tend to be 

different parts of speech, and, as Empson points out, the fact that 

singular verbs but plural nouns end with -s means that we can't 

generally or easily rhyme subjects with predicates.  So rhyming words 

tend to be arbitrarily connected. 

 

Consider the set R = {Mahatma Gandhi, the Coliseum, the time of the 

Derby winner, the melody from a symphony by Strauss, 

a Shakespeare sonnet, Garbo's salary, cellophane, Mickey Mouse, the 

                                                           
1. See here: http://www.straightdope.com/columns/read/1173/why-is-a-raven-like-a-

writing-desk  

http://www.straightdope.com/columns/read/1173/why-is-a-raven-like-a-writing-desk
http://www.straightdope.com/columns/read/1173/why-is-a-raven-like-a-writing-desk
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Nile,..., Camembert}.  Extensionally there's nothing unusual about it, 

even if it is, as the kids say, "kind of random."  Not that random 

though: these all belong to a somewhat larger set of words that can be 

formed into subsets consisting of rhymed pairs, e.g. {the melody of a 

symphony by Strauss, Mickey Mouse}.  Rhyming with a member of 

some smaller set is the principle of inclusion in the somewhat larger 

set. 

 

Or to put it another way, rhyming provides a principle of one-to-

one correspondence between two sets of entities whose names have at 

least one rhyme.  That's not how I'm defining those sets: that's how I'm 

characterizing one of many facts about their members.  So the set 

R (whose membership I haven't fully listed) is the union of those two 

sets that are in one-to-one correspondence. 

 

Now that principle, as we've seen, tends to be highly arbitrary in 

English.  The rhyming dictionary is disconcertingly senseless.  But 

what a poet does, like a riddler, is to find some intensional principle 

which defines a set given randomly and extensionally.  In this case 

that principle is that each member of the set R is a member of the set 

{things that are the top} (I am simplifying the song a little bit to make 

my point). 

 

Now this distinction between intension and extension is also a 

distinction between use and mention.  The principle of membership of 

the two sets whose union forms R is first of all, that is to say, as a 

matter of poetic craft, a principle which mentions terms, i.e. selects 

them for the fact that they rhyme.  (The rhyming dictionary mentions 

words: it doesn't use them.)  But the job of the poet is to take these 

mentioned words and use them, which means to say something with 

them and therefore something about the things they signify or refer to. 

The solution isn't just economical (as it is with a riddle), isn't just 

the sudden lifting of a burden through the sudden glory of an elegant 

summary of its components.  We shunt back and forth between use 

and mention, intension and extension, admiring at every moment how 

they fit together: look it rhymes! look, it's the top! 
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Studies (e.g. by Ray Jackendoff) of the neural handling of music 

suggest that different parts of the brain have different access to 

memory.  Some of the cerebral material we use to process music 

chunks and forgets immediately, so when a theme or motif is played 

again, it handles it as entirely new.  But other parts of the brain 

remember that motif or theme, and therefore experience a different 

relation to the novelty that is still being felt and processed.  That back 

and forth, that counterpoint, that complex and differently phased 

experience of music is the experience of music, or at least a large part 

of it. 

 

I think the same is true about rhyming (and meter), especially 

since it appears that music actually recruits the cerebral material that 

processes sounds: vowels are much lower pitched than consonants, 

and we put words together from sounds much as we put musical 

experience together.  So I think that we go back and forth, sometimes 

putting together the longer-term, more coherent intensional sense of 

the set of rhymes we're given and sometimes testing the always novel 

extension of the list, and that the delight in doing so is how the 

abstract distinctions to be found in set theory play out in the pleasures 

of poetry, and of math. (At least that's what struck me today.) 
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CLARIFYING THE FOUNDATIONS: AN 

INTRODUCTION TO THE SITE SETTHEORY.NET 

 
Sylvain Poirier 

 
1. Introduction

1
 

 

I am a math PhD from France
2
, and develop the site settheory.net to 

clarify the foundations of math and physics, by self-contained 

undergraduate level courses combining depth, generality, rigor and 

concision, involving many simplified but accurate presentations of 

concepts usually considered graduate level. I do it for free outside any 

institution. 

 

The settheory.net aims to: 

 

(1) Rebuild mathematics with (almost) no prerequisites. 

 

(2) Introduce the fundamental theories of physics (Relativity 

and quantum physics) 

 

It may be situated in between undergraduate and graduate levels: 

by its way of rebuilding everything from the start, it aims to fill the 

role of (a subset in progress of) an undergraduate curriculum (1st 

university year), but the difficulty level with the care for powerful 

methods and deep and complete explanations, is comparable to 

graduate level (3rd year). Also, it takes some of its inspiration and 

                                                           
1. In February 2017, I wrote this long introduction to the contents of this site and 

relations between logic and physics, for the special issue of the Amirkabir Logic 

Group in celeberation of 5th Annual Conference of the Iranian Association for Logic 

at Amirkabir University of Technology.  
 
2. I entered in thesis in September 97 to the Fourier Institute of Grenoble, with 

Christine Lescop. My defence took place on January 28, 2000. Its subject is "The 

configuration space integral for links and tangles in   ".   
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concepts from existing graduate-level mathematics (in a simplified 

form). 

It is thus mainly targeted at: 

 

(1) Clever undergraduate students with genuine interests in 

mathematics or physics (rather than focused on preparing for 

exams); 

 

(2) Teachers of mathematics or physics looking for deeper 

understandings of their subject; 

 

(3) Any people trying to learn science outside the academic 

system. 

 

It does not aim (nor exclude) to bring new ideas, results or theories 

(with few exceptions: the set generation principle; the page "Time in 

set theory" - interpretations of quantum physics), but focuses on 

developing new optimized paths to already known fundamental 

theories of mathematics and physics: putting things in the right order, 

to make high concepts look as clear, simple and fast to learn as 

possible. It combines the following advantages:  

 

(1) To be as rigorous as possible (everything is explained, all 

what is provable is proven from the beginning) 

 

(2) To give powerful and general concepts and tools, avoiding 

any unnecessary lengths. Rigor will not dilute or obscure the 

meaning. Proofs are usually very short. Pages are very dense, 

with many ideas per page to explain everything. The right 

formalism will express the highest concentration of meaning. 

 

(3) Original (cleaned up and restructured) approaches are 

given to most subjects. 

 

(4) Emphasis is placed on intuition, deep and "philosophical" 

explanations, the main foundational concepts and paradoxes, 

the mathematical world. 
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The set theory formalism presented here differs from the 

traditional ZF system, but aims to more directly fit the common use 

and notations of mathematics (without artificial encoding and 

abbreviation systems), and be cleaner on foundation and meaning. 

 

2. Leaving Academic "Research" Behind! 

 

I was always interested in mathematics, particularly algebra and 

geometry (especially in my youth). More generally, I am interested in 

global, foundational issues in diverse fields and the search for perfect 

theoretical solutions. During my teenage, I was very unsatisfied with 

the official teaching, which was an intellectual desert for me. I 

managed to learn Special Relativity and then express General 

Relativity by my own research. My dream was to become a particle 

physicist, as I naturally guessed that the fundamental laws of physics 

were rich of some of the most wonderful mathematical theories. But 

things turned out very differently, for many reasons. 

 

A first trouble was the low level of the teaching curriculum I went 

through, which I so direly needed to escape in my free time to explore 

theoretical physics far away from it, an exploration I thus did alone 

outside any academic guidance. But people around almost objected to 

this exploration, insisting that it wasn't time for me to explore the high 

skies of theoretical physics because I first needed to more fully 

assimilate the basic concepts on which higher theories can be built. In 

fact there is some truth in this idea, but in a very different way. It is 

not that I shouldn't have gone to theoretical physics at the beginning 

because I needed the help of schools (which I hated) to first teach me 

the right basis, but that I'd rather not continue to further theoretical 

physics at the end because schools (precisely: undergraduate 

curricula) actually don't provide the right basis for this, so that my 

help is needed to explain how to do it (but away from the system, 

which isn't welcoming any such proposition of progress). 

 

As in high school I was isolated in lack of hints for going further (to 

quantum physics...), I spent time re-thinking and finding ways to 

progressively clarify the same theories (general relativity and 
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electromagnetism). Still it wasn't enough, so I also thought about 

metaphysics (absurdity of the AI thesis which reduces the mind to a 

mathematical object), and economics (foundations of money and its 

stabilization problem; what problems occur in the world and which 

logical structures could ideally resolve them). 

 

At one point of my studies (in ENS Ulm), someone warned me 

that particle physics was actually a terrible field to work in. Following 

that advice I didn't continue far enough to fully verify this claim by 

myself, however I see indirect reasons for this to be true
1
. One is the 

mess of divergences that the fundamental equations of quantum field 

theory are plagued of, making it unclear whether any possibility of a 

rigorous mathematical approach should reasonably be expected at all. 

Another is, that many of the brightest minds from around the world 

are already working on the problem; so, what could just one more 

bright mind add to that, unless he'd have both incredible lucks of 

being somehow "the brightest", and that Nature would have chosen 

the ultimate laws of physics (or something amazing in them) exactly 

appropriate to be only discovered by the brightest physicist but not by 

others without him ? Wouldn't it be both more polite and cheaper in 

efforts, in case an amazing new discovery was just ahead of us, to 

leave the honor of making it to someone else (who would need it, for 

some reason I don't fully grasp but...), and simply later learn about it if 

really interesting ? The golden age of physics research, quickly 

grabbing lots of low hanging opportunities of discoveries, which 

Nature had available for us, seems to be past. After just a few decades 

of rapid advances (that is the blink of an eye compared to the long 

history of life on Earth), wonderfully explaining most of the physical 

phenomena that could be experimented, why did this quest have to 

suddenly stall without being complete ? God knows ; anyway we must 

cope with it. 

 

Generally, I was quite disappointed with the academic 

environment of mathematical research I experienced during my PhD 

(in algebraic topology : Vassiliev invariants constructed from the 

                                                           
1.  http://settheory.net/crackpot-physics  

http://settheory.net/crackpot-physics
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perturbative expansion of Chern-Simons topological quantum field 

theory
1
, (a topic I abandoned since then). The main group activities 

(what makes a life in official positions and labs differ from just 

staying home doing free personal research) were regular seminars 

where people reported their boring ideas to others who anyway don't 

care and cannot use in their own research (as they don't work in the 

same topic) but who anyway feel obliged to come and pretend 

listening to just for the sake of politeness (I was once scolded for not 

coming, since "being polite" in this way visibly mattered more than 

any meaningfulness of time spent). Indeed, why would the ideas of 

whoever happens to work in the same lab be worthier hearing than 

those of any other people working elsewhere on Earth ? that is 

something I couldn't figure out. I also several times heard of stuff like 

HOMFLY having multiple independent co-discoverers. Why bother 

researching and discovering something, just to end up being one of 

several independent discoverers of the same thing ? Even if 

institutions were okay to pay me for this, it didn't feel to me like the 

best way of giving sense to my life. 

 

Other factors drove me away from academic research, which I left 

for good after one year teaching as assistant professor of mathematics 

at Reunion university. It would still take me quite a long further study 

to catch up existing works until I could produce valuable new results 

myself in great fields such as particle physics (I had the chance to 

manage my PhD by picking a topic with not so great value to me, but 

wouldn't see what more to do there), while I was already exhausted by 

the wasteful academic path I previously followed with disgust as it 

wasn't done the way I believed to be needed. I also felt that the kind of 

popular hard unsolved problems which scientists usually work on, 

aren't often the most valuable ones: 

 

(1) The popularity of a topic cannot define its real value: the 

correlation may rather be negative, as popularity indicates that 

its possible low hanging fruits have been already picked; 

 

                                                           
1.  http://spoirier.lautre.net/thesis.html    

http://spoirier.lautre.net/thesis.html
http://spoirier.lautre.net/thesis.html
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(2) I once read a report of a result of complexity theory that 

"hard theorems are useless" but lost the reference; anyway the 

point is that things appeared this way to me in practice. 

 

Generally, it seems too many people focus their works on tackling 

some of the hardest questions, a bit like Olympic champions training 

their strength for the purpose of demonstrating how strong they are, 

but are not so good at asking the right questions (and I do not see 

academic philosophers better at this either despite their claims). A 

typical example is Bitcoin
1
: a wastefully sophisticated answer to the 

wrong questions about how a good online currency should work. 

Hardly any of its proponents seems to have seriously wondered for 

instance how the value of a currency could be stabilized, or even 

understood the fundamental importance of this question.  

 

Also, institutions have fundamental flaws such as the Peter principle 

(workers are tendentially raised to their "level of incompetence"). As I 

want to make an optimal use of my work for the world, I rather search 

for the right questions or tasks, where I can produce the most valuable 

works not because I'd be the most clever, but rather because these are 

crucially important questions on which, strangely, no other good 

thinker seems to be working yet. But such a radical form of 

originality, of choosing a research topic or other working direction 

whose potential value is ignored by the rest of the world, also makes 

unlikely to find any job open for this in any institution (since job 

openings are set by administrators more often looking for security 

than originality, while, logically, widely unexpected discoveries are 

hard to expect). I explained more aspects of my reasons for leaving the 

academic system and why it was a bad idea to join it in the first place, 

in my video “Why learn physics by yourself” 
2
. 

 

 3. From Physics to Mathematical Logic 
 

I was initiated to mathematical logic with amazement during my 

graduate studies (Magistère, ENS Ulm). It took me some maturation 

                                                           
1.  http://settheory.net/future/Bitcoin  

2.  http://www.settheory.net/settheory.net/learnphysics   

http://settheory.net/future/Bitcoin
http://www.settheory.net/settheory.net/learnphysics
http://www.settheory.net/settheory.net/learnphysics
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time until I could be productive there. Like in physics, I focused on 

simpler aspects, for which I could be directly useful: clarifying the 

basics (so, the foundation of the foundation). Things which many 

students have to go through but in need of clarification (to be done 

once and for all), usually neglected by other researchers who focus on 

more complex, high level issues with their hard open problems. But, 

as long as researchers only care to do research for the sake of "doing 

research", their productions are likely to stay desperately hidden in 

their ivory tower, useless to anyone who isn't yet already another 

researcher in the same field, having wasted many years of their life 

following traditional curricula followed by the other lengthy wasteful 

initiation path to that particular field of specialization.  

 

Among the people to whom an initiation to mathematical logic 

could benefit, but who currently cannot afford it because of the 

wasteful complexity of its teaching path, there are... physicists who 

have no time for this long path because they already wasted too many 

years of their life with their own messy teaching curriculum. Since, 

what made them waste so much time in their own curriculum, is... 

their weakness in mathematical logic. But what could be the use of 

mathematical logic in physics, you may ask ? It is of course that the 

laws of physics are deeply mathematical
1
, as reported by many great 

minds. Between the first guesses by Plato and Pythagoras, and some 

recent reports such as Wigner's "unreasonable efficiency of 

mathematics" (confirmed by Hamming in 1980), a remarkable short 

formulation is the one by Galileo:  

 

Philosophy [i.e. physics] is written in this grand book 

— I mean the universe — which stands continually 

open to our gaze, but it cannot be understood unless 

one first learns to comprehend the language and 

interpret the characters in which it is written. It is 

written in the language of mathematics, and its 

characters are triangles, circles, and other geometrical 

figures, without which it is humanly impossible to 

                                                           
1. http://www.settheory.net/fqxi  

http://www.settheory.net/fqxi
http://www.settheory.net/fqxi
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understand a single word of it; without these, one is 

wandering around in a dark labyrinth. 

 

But, once confirmed that physics is indeed written in the language 

of mathematics, we still need to specify what this language of 

mathematics actually is, for better clarifying our understanding of 

physics. Precisely, I found 3 interesting connections between physics 

and mathematical logic. A first one is a lesson which logicians have 

ready to teach to physicists. The second is an interesting formalism of 

mathematical physics usually ignored by logicians but in need of 

logical clarification for teaching. A third (but debatable) one is a 

possible lesson from logic for philosophers of physics. 

 

First is the simple issue of what a theory is
1
. Physics has its list of 

theories
2
; mathematical logic has precise general concepts of how a 

mathematical theory can be formed
3
 (as can be defined by either first-

order logic or second-order logic, but their differences do not matter 

for physics), but strangely, physics teachers never seemed to care 

whether any match between these should be made and how. And 

which interesting lesson can logic have to say to physics teachers 

about what a theory is? That each theory comes with its own 

language: the language in which it is expressed, made of a list of 

names of the structures
4
 of the system which the theory describes. 

Then, we may introduce and study the automorphism group
5
 of the 

system, made of all transformations which preserve these structures. 

  

But physicists took completely different habits: instead of this, they 

just express any of their theories in always the same language (the 

only one they know, as if it was the only possible language of 

mathematics): the language of packs of real numbers and packs of 

operations. Then, among their packs of operations they choose some 

specific ones: some transformation groups. And only at the end of 

                                                           
1. http://settheory.net/foundations/metamathematics  

2. http://settheory.net/physics-theories  

3. http://settheory.net/foundations/theories  

4. http://settheory.net/foundations/structures  

5. http://settheory.net/automorphism    

http://settheory.net/foundations/metamathematics
http://settheory.net/foundations/metamathematics
http://settheory.net/physics-theories
http://settheory.net/physics-theories
http://settheory.net/foundations/theories
http://settheory.net/foundations/theories
http://settheory.net/foundations/structures
http://settheory.net/foundations/structures
http://settheory.net/automorphism
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this, they investigate which of the many possible operations have a 

special property : the property of being invariant by the given 

transformations (which they may name by some more sophisticated 

adjectives such as "covariant" to make it look like an amazingly 

intelligent quality, no matter if students cannot decipher what it may 

really mean). But did physicists consider that in logic, these invariant 

or "covariant" structures are those which come first and are actually 

the only structures which exist in the language of the intended theory, 

in terms of which the theory naturally ought to be expressed? Did they 

ever consider that they might have just wasted a lot of time and 

obscured the understanding of the theory in the students minds, every 

time they expressed something in formulas formed of variables and 

operations which don't already belong to this short list of invariant 

stuff ? Do I need to explain why such a way of "mathematically 

expressing theories" can be a terrible one, making the physics 

teachings much messier and harder to follow than actually necessary ? 

(I was recently censored from physicsforums.com 
1
just for the sin of 

defending this view, that there exists such a thing as a mathematical 

conceptualization, and that a explanation's quality of "being 

mathematical" cannot be reduced to how numerically accurate it is ! 

Namely, I was denied the right to reply to an accusation that my 

approach was "without using any math" just because it wasn't purely 

computational). 

 

Second, comes the issue of how formal expressions are structured. 

Many logic specialists, in a desperate try to kill boredom and give 

themselves some jobs, spend a lot of time inventing and investigating 

their own alternative logical frameworks, eventually involving some 

new extravagant ways of putting symbols together to form formulas, 

regardless that nobody beyond them has any chance of ever making 

use of such formalisms anyway. But hardly any of them seems to have 

heard of the following facts, actually well-known by anyone who 

studied graduate physics, just because... most logic specialists never 

went to learn graduate physics themselves: 

 

                                                           
1. http://www.settheory.net/physicsforums     

http://www.settheory.net/physicsforums
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(1) A large part of the concepts and formulas throughout 

theoretical physics (from relativistic mechanics, 

electromagnetism and General Relativity to basic quantum 

physics and quantum field theory), is actually expressed in a 

common mathematical formalism: that of tensors
1
 which looks 

quite different from all the "normal" style of mathematical 

formulas (the only one known by undergraduate math 

students) described by classical logic. 

 

(2) What is remarkable there is that each (monomial) tensorial 

expression forms a graph made of occurrences of symbols 

linked together in ways respecting their types (reflecting the 

spaces to which arguments respectively belong), similarly to 

how, in classical logic, symbols are normally linked together 

(each operation symbol to its arguments) to form expressions, 

but without any definite hierarchical order of sub-expressions 

from a root to branches. 

 

(3) The strangeness of this formalism in which physicists are 

already expressing much of their works, still makes it a big 

trouble for them to properly explain what it all means. Their 

usual initiation courses to the topic remain so messy and hard 

to follow, that this "difficulty" forms one of the main obstacles 

against introducing it, and with it some "more serious" physics, 

into undergraduate physics curricula. 

 

Third, is the philosophical understanding of the nature of time. 

General Relativity only involves time as a geometric dimension, thus 

without any philosophical feature of time such as its flow and its 

orientation. Then quantum physics and statistical physics do involve a 

time orientation and flow (with measurement and entropy creation), 

however these seem to come "from nowhere" and are not really 

accounted for by any theory of physics. Mathematical logic, on the 

other hand, explicitly provides some kinds of time orientation 

interestingly similar to intuitions of the flow of time and free will 

                                                           
1. http://settheory.net/tensors   

http://settheory.net/tensors
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(though usually not pointed out) : complexity theory, randomness 

(Chaitin), halting problem, truth undefinability and incompleteness, 

transfinite induction... I already introduced the main aspects of this 

flow of the time of mathematics in the philosophical pages 
1
at the end 

of my Part 1 on mathematical foundations.  

 

I think these similarities could be worth entering the philosophical 

debate, and I already formulated my propositions for this in my 

metaphysics text A mind/mathematics dualistic foundation of physical 

reality
2
. 

 

4. Mathematical Foundations 

 

To sum up some of the main points of my contributions in the 

foundations of mathematics: 

 

(1) While I agree that ZF(C) is one of the best references for 

research works on set theory, especially for relative 

consistency results such as that of CH, I find it not the best 

choice of basis to start mathematics: neither for "practical 

mathematics" for undergraduates, nor even as properly self-

explaining of why it is indeed a good reference for high-level 

consistency results. 

 

(2) For a better start of mathematics
3
 I propose a new 

formalization of set theory, introduced in parallel with the 

rudiments of model theory. There I admit as basic objects not 

only sets but also pure elements and functions. Oriented pairs 

and other tuples
4
 are more cleanly defined as functions. 

 

(3) Several axioms of sets existence come as particular cases 

of a single principle
5
, a sort of "any class behaving like a set is 

                                                           
1. http://settheory.net/foundations/time-in-model-theory    

2. http://settheory.net/mind-math_dualism.pdf  

3. http://settheory.net/foundations/  
4. http://settheory.net/sets/tuples   
5. http://settheory.net/foundations/set-criterion  
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a set", namely : the classes in which a quantifier is equivalent 

to a formula with bounded quantifiers. In the philosophical 

pages I then justify this principle itself 
1
 from a philosophical 

understanding of the difference between sets and classes: not 

that of limitation of size, but using a concept of mathematical 

time flow (through an interplay between set theory and model 

theory) : "a class is not a set if it remains able to contain 

elements which do not exist yet" (which may happen for very 

small classes such as one just able to contain one future 

element). The remarkable fact that the powerset
2
 does NOT 

comply to this condition, accounts for the possibility for 

different universes to interpret the powerset differently
3
.  

 

(4) I introduce categories quite early (even before a formal 

definition of natural numbers). I start with a variant of the 

concept of concrete category
4
, without any mention of 

functors. (I used the word "functor" for a more general 

concept
5
 which I need to name but did not see named by other 

authors : the structures of any theory are operators and 

predicates ; the unary operators are what I call functors). That 

is my way to give categories a good place in the picture, 

implicitly responding to arguments of some category theorists 

that "ZF is not good because it does speak about categories, so 

let us take categories as an alternative foundation of maths". 

No, categories are nice but I never saw a good way for 

category theory to replace set theory as a foundation of maths 

anyway, so here is what I see as a good balance instead. 

 

(5) I give a clean abstract mathematical definition of the 

concept of algebraic term
6
, which I did not see well done 

elsewhere, as a particular case of relational system. It is not a 
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particular case of "strings of symbols", an approach seemingly 

common by other authors (influenced by computer science 

where everything is a file that is a string of symbols ?), but 

which I see complicating things uselessly by its need to define 

criteria of syntactic correctness and then interpretations of such 

strings, and by its implicit use of arithmetic in the concept of 

"string". My way does not assume arithmetic (except for arities 

of symbols) but, on the contrary, provides it as a particular 

case of term algebra. 

 

(6) I give a short proof of the Completeness theorem of first-

order logic
1
 : less than one page, that is much shorter than how 

I usually saw it done by other authors. Why do they spend so 

much time with complications when a simple way is possible? 

 

(7) I finally explain the right philosophical justification for the 

axiom schema of replacement
2
, which is much more subtle and 

complex than naively assumed. 

 

For now I just have a few drafts on the foundations of geometry, 

which I plan to improve and develop later (affine, projective, 

conformal, hyperbolic... first done in French long ago
3
). Despite the 

abstraction which may repel some, I found interesting to present some 

universal algebra (clones, polymorphisms
4
,...) as a basis for linear 

algebra and duality, before developing it into the formalism of tensors. 

I generally optimized the expression of many topics, to take much 

fewer pages than usual courses for a similar amount of knowledge, by 

many small ideas which I cannot list here. 
 

 

 

5. Foundations of Physics 
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In the physics part of my site I provide two general overviews of 

physics, and a series of expositions of specific theories. I did not work 

on it as much as on the math yet, so it remains quite incomplete, and 

more of the pages are still drafts. 

  

In the list of physical theories
1
 I explain the logical articulations 

between the diverse more or less fundamental theories of physics, and 

the hierarchical orders between them (another map of theories is given 

in the metaphysics text
2
).  

 

In the exploration of physics by dimensional analysis 
3
I present a wide 

overview of many phenomena by simply expressing the orders of 

magnitude of their characteristic quantities, such as the size of atoms 

and the velocities of the sound, as determined by the fundamental 

constants (and some contingent parameters), so as to give hints of how 

things work according to diverse theories without entering their actual 

formulation.  

 

The exposition of specific theories starts with Special Relativity
4
, 

which I see as the logically second theory of physics after geometry: it 

just describes the geometry of our physical universe, that is space-

time, more correctly than the mere 3D Euclidean space we usually 

imagine it to be. 

  

I still have to develop the exposition of relativistic mechanics from the 

Least Action Principle
5
 to the conservation laws (which would already 

need tensors for a clean and complete formulation). But I already 

explained the fundamental equation of General Relativity by a simple 

approach, already rather rigorous without the tensorial formalization 

(required for more general cases) based on the example of the 

universal expansion
6
. This may be continued, on the one hand up to 

                                                           
1. http://settheory.net/physics-theories  

2. http://settheory.net/mind-math_dualism.pdf  

3. http://settheory.net/dimensional-analysis  
4. http://settheory.net/relativity  

5. http://settheory.net/least-action  

6. http://settheory.net/cosmology  
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electromagnetism (I only wrote a comment on its Lagrangian
1
), on the 

other hand up to the symplectic geometry of the phase space. 

 

But I wrote what comes after this: the Liouville theorem 

(conservation of volume of the phase space) gives the foundation of 

thermodynamics
2
. I precisely explained the nature of entropy and its 

creation process, by an exposition which follows the main logical 

structure of how it is actually known to work on the basis of quantum 

mechanics, but without actually formulating this basis; instead of this, 

I relate things with the approximation of classical mechanics. While 

this exposition isn't actually rigorous (since the reasoning does not 

match the described "classical foundation" while its actual quantum 

justification isn't explicitly formulated at that step), it still provides a 

clarity making it look somehow simpler, more intuitive and coherent 

than usual expositions still nowadays trying (and failing) to provide a 

form of logical rigor on the conceptual basis of pure classical 

mechanics (which was the only available one when statistical physics 

was first formulated, until it was found to not be the best match to 

reality). In particular I take account of the quantum fact that the states 

of systems are really probabilistic ones as they are undetermined until 

they are measured. And despite some widespread prejudices, this 

actually simplifies the math. 

 

Then comes an introduction to quantum physics
3
, and a review of 

its main interpretations. I found a way to express some basic aspects 

of quantum physics in mathematically accurate but quite simpler ways 

than usual courses, actually explaining in a simple geometric language 

(affine and projective transformations) the mathematical coherence of 

its paradoxical predictions such as those of the double slit 

experiment
4
. Then I develop critical reviews of the main 

interpretations (Copenhagen
5
, Bohm

6
, many-worlds

1
, spontaneous 
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collapse
2
), and an exposition of the one I support with original details: 

the Von Neumann-Wigner interpretation
3
, giving a fundamental role 

to consciousness (considered immaterial) in the wavefunction 

collapse. I develop this into an original ontological position, variant of 

idealism : mind/mathematics dualism
4
 (admitting mind and 

mathematics as two distinct fundamental substances, separately time-

ordered, while the physical is a combination of them). I also provide 

many links to references on the topic. 

 

6. Other Pages of the Website 

 

In the “World” section 
5
of the website I developed a long list of links 

to teams (and more isolated researchers) on logic and mathematical 

foundations around the world, encompassing 3 kinds of orientations 

(and thus of faculties they may belong to) : mathematics, computer 

science and philosophy. I guess it may be about 80% exhaustive (it 

becomes harder to complete as the few missing ones are harder to 

find). I also listed some other kinds of resources in the field (journals, 

proving software, organizations, blogs, conferences, courses...).  

 

It is ironical to see all researchers working in the institutions, so 

much focused on similar kinds of missions and the publication of their 

own work without caring as much about that of their peers, that none 

of them cared to invest as much efforts as I did into this task of listing 

their peers worldwide.  

 

Another important part of my site is a series of texts commenting 

diverse aspects of the stakes of the world's future
6
, such as the failure 

of communism, human intelligence, and environmental, economic, 

demographic, political and educational aspects. I wrote much of these 
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in reply to many essays I reviewed from the 2014 fqxi essay contest 

"How Should Humanity Steer the Future?".  

 

Finally, another big part of my research was to design a plan of 

new online social network which would resolve many current defects 

of the Web and other world's problems. In the page "Why I am upset" 
1
I commented on the dire lack of people combining the qualities of 

care and intelligence (ready and able to deeply and properly think 

outside the beaten paths and then act over the conclusions); how the 

few such people have no good place in this world, and the big 

consequence I faced: that, no matter that I could usually convince all 

the people who took the time to understand parts of my plan were 

convinced of its high value and rather cheap feasability, it still has "no 

reputation" just because "reputation" in this world remains a matter of 

global rumor, something completely mindless and circular which no 

mindful person ever cares to correct, as there is no good way to share 

and structure non-trivial information on trust and reputation. 

Ironically, this problem is precisely among the main ones my plan 

would resolve, as it was the starting issue around which I designed it. 

To implement it, all I need is one or a few good web programmers (a 

category of people usually very hard to find available at an affordable 

price as they are so much demanded on the world market). 
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INDIAN LOGIC IN “THE COLLECTED WRITINGS 

OF JAYSANKAR LAL SHAW”   

 
Jaysankar Lal Shaw 

 
1. About the Author 

 

Jaysankar Lal Shaw is a retired professor of philosophy at Victoria 

University of Wellington. His main area of research is comparative 

analytic philosophy.   

 

My research in the field of Indian and Comparative Philosophy is 

considered to be pioneering. My aim is to suggest some new solutions 

which involve both scholarship and creativity. My publications 

include eleven books and some ninety papers, some of which are 

monograph-length. My papers have been the first of their kinds in 

many  Western journals of philosophy and logic. The seminars I 

organised were also the first of their kinds  

 

I have presented approximately 160 papers at different 

conferences or seminars  in several countries. I have received  more 

than 110  funded invitations from institutions or universities around 

the world. 

 

My papers were greatly appreciated by my peers as I used the 

techniques of classical Indian philosophers for solving some of the 

philosophical problems of Western philosophy. Some of my papers 

are also related to the works of classical Indian scholars or Pandits. 

 

I have directed orientation courses on comparative philosophy in 

several countries.  I am also a founder of several Societies in different 

countries for the promotion of Indian and comparative philosophy. 

 

Profiles of my academic achievements and lectures have been 

published more than 125 times in various leading newspapers and 
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magazines in different languages in several countries.  A poem has 

also been published in my honour in Bengali. 

My teaching programme encompasses both Western and Indian 

philosophy, which is a rarity. 

 

My unique contribution to the field of comparative philosophy has 

taken on the form of a global movement. My research in the field of 

comparative philosophy will promote better intercultural 

understanding among different communities  and nations at large. To 

quote the Deputy Mayor of Wellington: “He is doing God’s work” 

 

2. About " The Collected Writings of Jaysankar Lal Shaw: Indian 

Analytic and Anglophone Philosophy" 

 

One of the first philosophers to relate Indian philosophical thought to 

Western analytic philosophy, Jaysankar Lal Shaw has been reflecting 

on analytic themes from Indian philosophy for over 40 years. This 

collection of his most important writings, introduces his work and 

presents new ways of using Indian classical thought to approach and 

understand Western philosophy. 

 

By expanding, reinterpreting and reclassifying concepts and views of 

Indian philosophers, Shaw applies them to the main issues and 

theories discussed in contemporary philosophy of language and 

epistemology. Carefully constructed, this volume of his collected 

writings, shows the parallels Shaw draws between core topics in both 

traditions, such as proper names, definite descriptions, meaning of a 

sentence, knowledge, doubt, inference and testimony. It captures how 

Shaw uses the techniques and concepts of Indian philosophers, 

especially the followers of the Navya-Nyaya, to address global 

problems like false belief, higher order knowledge and extraordinary 

perception. Exploring timeless ideas from Indian thought alongside 

major issues in contemporary philosophy, Shaw reveals how the two 

traditions can interact and throw light on each other, providing better 

solutions to philosophical problems. He has also reflected on modern 

issues such as freedom, morality and harmony from the classical 

Indian thought. 
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Featuring a glossary and updates to his writings,The Collected 

Writings of Jaysankar Lal Shaw: Indian Analytic and Anglophone 

Philosophy also includes new work by Shaw on the relationship 

between Indian and analytic philosophy today. 

 

3. The Content of the Book  

 

The Collected Writings of Jaysankar Lal Shaw: Indian Analytic and 

Anglophone Philosophy contains the following topics. The Part III 

deals with Indian and Buddhist logic.   

 PART I: Metaphysics  

 

1. Causality 

 

2. Buddhism on Suffering and Nirvana 

 

3. The Referent of 'I': An Indian Perspective 

 

4. The Nature of Nyaya Realism 

 

 PART II: Epistemology 

 

5. The Nyaya on Sources of Knowledge – Perception, Inference, 

Analogy, and Testimony: Some Contemporary Problems and 

their Solutions from the Nyaya Perspective 

 

6. Knowledge, Belief and Doubt: Some Contemporary Problems 

and their Solutions from the Nyaya Perspective 

 

7. A Note on Cognition of Cognition in Indian Philosophy 

 

8. Subject and Predicate 

 

9. Navya-Nyaya on Subject-Predicate and Related Pairs 
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 PART III: Logic and Mathematics 

 

10. Austin on Falsity and Negation 

 

11. Empty Terms: The Nyaya and the Buddhists 

 

12. Negation and the Buddhist Theory of Meaning 

 

13. The Nyaya on Double Negation 

 

14. Universal Sentences; Russell, Wittgenstein, Prior, and the 

Nyaya 

 

15. Singular Existential Sentences: Contemporary Philosophy and 

the Nyaya 

 

16. The Nyaya on Number 

 

17. The Concept of Relevance (Sagati) in Gagesa 

 

 PART IV: Philosophy of Language 

 

18. Proper Names: Contemporary Philosophy and the Nyaya 

 

19. Demonstrative Pronouns 

 

20. Descriptions: Some Contemporary Problems and their 

Solutions from the Nyaya Perspective 

 

21. Conditions for Understanding the Meaning of a Sentence: the 

Nyaya and the Advaita Vedanta 

 

22. Levels of Meaning 

 

23. 'Saturated' and 'Unsaturated': Frege and the Nyaya 
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24. Some Reflections on Kripke 

 

 PART V: Morals and Values 

 

25. Dharma and the Law of Karma in Indian Culture 

 

26. The Nature of Human Beings: East and West 

 

27. Freedom: East and West 

 

28. Swami Vivekananda and Bertrand Russell on Conception and 

Development of Human Beings 

 

29. Concepts of Harmony in Indian Philosophy 

4. Some Reviews 

 

The book has received the following reviews from other researchers in 

the same area of research: 

 

There has never been anyone who has done more to 

focus Western philosophers on the significance of 

Indian analytical philosophy, in particular, 

philosophical logic and the philosophy of language, 

than Professor Jay Shaw. I'm delighted that finally 

there is a single volume that brings all of these exciting 

and creative papers together.  

–  Ernie Lepore, Board of Governors Professor of 

Philosophy and Acting-Co-Director of Cognitive 

Science, University of Rutgers, USA, 

 

 Jay Shaw is greatly accomplished at demonstrating 

deep knowledge of not only one, but multiple 

philosophical traditions, using one to illuminate issues 

raised in another. By juxtaposing linguistic aspects of 

Nyaya with the philosophy of language in analytic 
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philosophy, for example, he provides new comparative 

insights which are likely to come as a surprise to many 

analytic philosophers.  

– David Lumsden, Research Associate in Philosophy, 

University of Waikato, New Zealand,  

 

Dr. Jaysankar Lal Shaw is one of the most significant 

stalwarts of Indian and comparative philosophy in the 

contemporary analytical context. Grappling with the 

interstices of Indian and contemporary (Western) 

analytical thinking in an inimitable way, each of 

Shaw's essays shows the 'gift of fruitful dialogue' and 

'conversation' between (seemingly) disparate traditions 

of thought, demonstrating his enormous influence 

across various sub-fields of philosophy. 

 – Purushottama Bilimoria, editor-in-chief of 'Sophia, 

International Journal of Philosophy and Traditions', 

 

5. The Message of Amirkabir Logic Group 

 

On March 24, 2017, the editor of the present collection, Ali Sadegh 

Daghighi, was invited by the author of this article to send a message, 

as the representative of the Amirkabir Logic Group, addressing the 

Society for Philosophy and Culture in New Zealand which was 

hosting a book launch session
1
 celebrating the recent publication of 

The Collected Writings of Jaysankar Lal Shaw, on March 31. 2017. 

The full text of this message is as follows: 

 

  

                                                           
1. Read more about this event and the Society for Philosophy and Culture here: 

http://www.philosophyandculture.org/seminars/the-collected-writings-of-jaysankar-

lal-shaw/  
  

http://www.philosophyandculture.org/seminars/the-collected-writings-of-jaysankar-lal-shaw/
http://www.philosophyandculture.org/seminars/the-collected-writings-of-jaysankar-lal-shaw/
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Society for Philosophy and Culture, 

Dear Members, 

Distinguished Guests, 

 

As the representative of the Amirkabir Logic Group, it 

is my pleasure and honor to have the chance to address 

my remarks to the attendees of this event. 

 

First of all let me sincerely thank the Society for 

Philosophy and Culture for hosting this gathering and 

also the distinguished professor, Jaysankar Lal Shaw, 

from Victoria University of Wellington, for his kind 

invitation. 

 

I got introduced to Prof. Shaw through my logician 

friend and colleague, Anand Jayprakash Vaidya from 

San Jose State University, who was informed of our 

intention to strengthen the ties with those colleagues 

around the world who are willing to promote research 

on Indian and Buddhist logic among the Iranian 

researchers. It is actually part of our general plan for 

introducing less well-known areas of research to the 

Iranian mathematical and philosophical logicians. 

 

Having the privilege to be the editor of an under 

preparation special issue for the 5th Annual 

Conference of the Iranian Association for Logic (IAL) 

at the Amirkabir University of Technology and from the 

perspective of Amirkabir Logic Group in general, I 

think publishing a review of Prof. Shaw's “Collected 

Writings on the Indian Analytic and Anglophone 

Philosophy” in our book will be a perfect starting point 

for many joint collaborations in the future. 

 

The review of Prof. Shaw's book, as a unique digest of 

his life-time research along the lines of Indian logic 

and comparative analytic philosophy, will appear in 
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our collection of papers and will be distributed among 

logicians of different research backgrounds in and out 

of Iran. We eagerly look forward to receiving our 

audience's feedback concerning Indian logic in general 

and Prof. Shaw's book in particular. We also sincerely 

welcome all those colleagues who might be interested 

in collaborating with the Iranian logic society on the 

joint projects of common interest.     

 

It is my hope, and indeed the hope of all members of 

the Amirkabir Logic Group, that a better environment 

for academic collaborations shall emerge out of such 

international interactions between Iranian logic society 

and its counterparts around the world – collaborations 

founded upon mutual understanding and collective 

efforts of the members of our communities. 

 

Thank you for your time and attention, and I wish you a 

joyful and successful meeting. 

 

Ali Sadegh Daghighi 

Amirkabir University of Technology, 

Tehran, Iran, 

March 2017. 

  



 

 
 

 

 

 

 

 

 

 
  



 

 
 



 

 
 

A NOTE ON “THERE ARE TWO ERRORS  
IN THE TITLE OF THIS BOOK” 

       
Robert Martin 

 
I was born in 1942, and lived in New York until I graduated with a 
philosophy degree from Columbia University; then I attended the 
University of Michigan, where I got my PhD. My first job was at 
Dalhousie University in Halifax, Nova Scotia, Canada, and except for 
occasional visiting teaching elsewhere, I stayed there for forty years 
until I retired. 
  

My first book, published in 1987, was about philosophy of 
language, and since then I have published books on deductive logic, 
on inductive logic, and on several other subjects. My aim always has 
been to write in a way that’s friendly to readers – that makes things 
clear to them, and makes them interested in reading.  

 

I appreciate informal, reader-friendly writing, and I try to produce 
it. I also think that humor has a place in even academic writing! I have 
just finished a book to appear later this year in a completely different 
area: how to write good English. 

 

What led me to write the Two Errors 
1
book was a list I had been 

keeping of philosophical thought experiments, puzzles and paradoxes. 
The list grew and grew, until it appeared to me that it might become a 
whole book if I continued to add to it.  

 

I take philosophy to be concerned with providing theories for other 
sorts of fields. Thus for example there is philosophy of science, which 
attempts to discover the central principles of scientific procedure, and 
to justify them. A philosophical theory, like any sort of theory, can be 
of pure intellectual interest, and sometimes without much (or any) 
practical implication. This is not a bad thing! A great deal of theory-
building is (at least for the moment) without practical implication, 
motivated just by people’s curiosity—their desire to figure out how 
things work. People in any area usually get along quite well without a 
theory—a philosophy—of what they’re doing. They just do it! But 
sometimes a a puzzle or paradox arises, or a thought experiment with 

                                                           
1. The book has been translated into Persian by Razieh Salim Zadeh and is 

published by Ghoghnous publications in Iran.   
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surprising results; this is a symptom of a contradiction or 
incompleteness in our unspoken—even unexamined—principles for 
doing something. This provides a special stimulus for thinking 
philosophically, and may be a source for its practical usefulness, if it 
can fix a contradiction or incompleteness. 

 

Logic is the branch of philosophy which tries to provide theories 
of reasoning. As in the rest of philosophy, the motive for theorizing 
here may just be pure curiosity. I think that most of logic is really 
without practical use. The reason for this is that reasoning skills are 
not often helped by learning the theory of reasoning—in the same way 
as, for example, leaning the physics of moving objects is of no use in 
learning how to play football! Very often the theory of some kind of 
reasoning is more complicated, harder to understand and learn, than 
the reasoning it is the theory of. People who are having intellectual 
problems with reasoning itself might have even greater problems 
learning its logic. 

 

But sometimes theory-building does have practical application, 
even importantly. In the case of logic, for example, it was necessary to 
figure out the theoretical structure of certain kinds of reasoning in 
order to build a machine that could to it—and that’s why it took 
logicians to invent the computer.  

 

I was asked about further readings. There are hundreds of good 
books in logic, and a hundred times as many in philosophy as a whole. 
But I’ll mention just a very few that I liked very much. Smullyans’ 
What is the Name of This Book is a good collection of problems, 
puzzles, and paradoxes. It is a bit less philosophically oriented than 
my Two Errors book, but there is, nevertheless, a good deal of overlap 
in areas talked about. (His title was obviously the inspiration for 
mine.)  

 

Michael Clark’s Paradoxes from A to Z is another such work. 
What If: Collected Thought Experiments in Philosophy is diverting 
and simple. A book dealing with philosophical perplexities in science 
and mathematics is John L. Bell’s Oppositions. About philosophy in 
general, I highly recommend Chris Daly’s rigorous, scholarly and 
complex An Introduction to Philosophical Methods; but for a much 
easier (and more entertaining, I think) book on the same subject, I 
should mention my recently published For The Sake of Argument: 
How to Do Philosophy. 



 

 
 

 

 

 

 
 
 



 

 
 

 
 



 

 
 

BRAIN’S ALGORITHM: ON VON NEUMANN’S 

“THE COMPUTER AND THE BRAIN” 

 
Keyvan Yahya 

 
There is certainly no discussion over the fact that neuroscientists will 

not ever be able to find a copy of Hamlet, Shakespeare’s magnum 

opus, in the brain nor can they find a plugging to remove the contents 

of the brain to a PC or vice versa in the same way we are transferring 

our files stored on digital devices from one system to another. This 

statement  is stemmed from a striking discovery of the brain science 

that blew the high hopes away by undermining a very popular view 

held by cognitive scientist, in that, the brain is no different to a digital 

computer working with bits , symbols and tokens most similar to that 

of the laptop by which this article is being typed. No such a thing as 

memory, cache and so forth do exist in the brain.  

 

The historical root of this traditional trend in artificial intelligence 

is dating back in the 1940’s when the invention of the modern 

computer was largely considered a breakthrough leading the experts 

including psychologists, linguists, and neuroscientists to assert that the 

human brain works pretty much like a computer. (Searle, 2004)  

 

This seemingly promising view was later empowered by some 

especial blends from both functionalism and behaviorism and ended 

up fostering as an overgrowing school of taught called strong AI 

according to which every cognitive aspect of the brain is somehow 

associated with a series of functions which can thoroughly be 

explained in terms of algorithms and digital information, then again, 

just like computers.  

 

It mustn’t come to anybody’s surprise that the past generations of 

scientists were enormously inclined to the tenet of such an appealing 

theory that appeared to help them disclose the most grotesque mystery 

of all times for which no single substantial leading que had ever come 

forward until after computer was invented, the stubborn problem of 
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human cognition and consciousness, that was too equivocal and 

remote to fit in with the foundations of the natural sciences back then. 

Nevertheless, in spite of such a promising idea as brain as a computer 

plus a considerable progress we have so far made in the pursuit, the 

ultimate breakthrough is yet to come.  

 

Taking a closer look at the brain of infants can show us how 

vacuous the whole idea is .Thanks to evolution, human neonates, like 

the newborns of all other mammalian species, enter the world 

prepared to interact with it effectively. A baby’s vision is blurry, but it 

pays special attention to faces, and is quickly able to identify its 

mother’s. It prefers the sound of voices to non-speech sounds, and can 

distinguish one basic speech sound from another. We are, without 

doubt, built to make social connections.What matters in the beginning 

is a bundle of senses, reflexes, learning mechanisms and nothing 

more. We would have never survived, had we not been equipped with 

these capabilities at birth. Meanwhile, a massive body of the literature 

implies that we are not born with: information, data, rules, software, 

knowledge, lexicons, representations, algorithms, programs, models, 

memories, images, processors, subroutines, encoders, decoders, 

symbols, or buffers – structural elements that enable digital computers 

to behave somewhat intelligently.  

 

If we are to describe the quintessential job of digital computers, 

we should simply say information processing – numbers, letters, 

words, formulas, images. Digital computers encode the information 

into a certain type of format, i.e., patterns of ones and zeroes (‘bits’) 

organised into small chunks (‘bytes’). Computers, quite literally, 

move these patterns from place to place in different physical storage 

areas etched into electronic components. They really operate 

on symbolic representations of the world and moreover, they 

store and retrieve this information. The human brain just doesn’t do 

so.  

 

The tenet of the view can easily be found in  a seminal book by 

John von Newman (1958) in which he first clearly states that human 

brain bears a strong resemblance to digital computer and then he 
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draws a detailed comparison between the neural pathways, neurons, 

neural networks and the component of digital computers of the day. 

This book, in effect, pioneered a new interdisciplinary field that aims 

to lead all those endeavors towards understanding the brain 

considering the brain is just another digital information processor. 

This view rose to fame during the 1970’s reflected through an 

impressive number of both technical and mainstream writings 

including (Ray Kurzweil, 2013) that all in all elaborate the algorithms 

the brain employs to receive, store retrieve and process information. 

Although the allure of the metaphor information processing (IP) fell 

out of favor in the recent years due to the significant studies that 

questioned the biological plausibility of these kind of theories, it 

seems that the IP metaphor has still enough deity to dominate the 

whole area of cognitive research so that we can hardly imagine the 

mainstream research programs could proceed without it.  

 

As an example, the integrated information theory (IIT) suggested 

by the renowned Italian neuroscientists Guilio Tonini (2003) can be 

referred to as the incarnation of the same old discourse into a more 

biologically convincing body. As for the other theories born with the 

same inbred, IIT also takes the (IP) metaphor into account suggesting 

that consciousness is composed of a specific set of specific 

phenomenal distinctions given rise by the integration of information 

accumulating all across the thalamocortical pathway leading to a 

complex system with a threshold and once the brain passes the 

threshold, the cognitive qualities such as consciousness will emerge 

inside out.  

 

Of course, it is noteworthy that the tenet of IIT in some ways 

differs to that of the existing theories of this category. First and 

foremost, IIT is not a functionalist theory of consciousness at all and 

also take a very dim view of another central metaphor of 

functionalism that considers mind to be just like software running on 

your brain.  
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