gr R ⇔ (Set R ∧ ∀x∈R, Fnc x ∧ Dom x = V2).
For any binder Q and any graph G, the formula Qz∈G, A(z0,z1) that binds the variable z = (z0, z1) on a binary structure A definite on G, can be seen as binding 2 variables z0, z1 on A(z0, z1), and thus be denoted with a pair of variables: Q(x,y)∈G, A(x,y).
The transpose of an ordered pair ist(x,y) = (y,x)
The transpose of a graph R is the image of transposition over it:tR = {(y,x)|(x,y) ∈ R}
We define the domain and the image of a graph as the respective images of π0 and π1 over it:Dom R = {x|(x,y) ∈ R}
Im R = {y|(x,y) ∈ R} = Dom tR
∀x, R⃗(x) = {y
| (z,y)∈R ∧ z=x}.
∀y, R⃖(y) = {x | (x,z)∈R ∧
z=y} = tR⃗ (y).
∀x,y,
y ∈ R⃗ (x) ⇔ (x,y)
∈ R ⇔ x ∈ R⃖
(y)
∀x, x ∈ Dom R ⇔ R⃗
(x) ≠ ∅
Dom R ⊂ E ⇒ Im R = ⋃x∈E R⃗(x) ∧
∀y, R⃖(y) = {x∈E | (x,y) ∈ R}
R⃗E =
(E∋x ↦ R⃗(x))
R⃖F = (F∋y ↦
R⃖(y))
(R⃗) = R⃗Dom R
(R⃖) = R⃖Im R.
Gr f = {(x,f(x)) | x ∈ Dom f}
∀x,y, (x,y) ∈ Gr f ⇔ (x ∈ Dom f ∧ y =
f(x))
Dom f = Dom Gr f
Im f = Im Gr f
Gr f ⊂ R | ⇔ ∀x∈Dom f, f(x) ∈ R⃗(x) |
R ⊂ Gr f |
⇔ (Dom R ⊂ Dom f ∧ ∀(x,y)∈R, y = f(x)) |
R = Gr f |
⇔ (Dom R ⊂ Dom f ∧ ∀x∈Dom f, R⃗(x) = {f(x)} ) |
∀x∈ Dom R, !:
R⃗(x)
∀x,y∈R, x0 = y0 ⇒
x1 = y1.
For any set E we shall denote 𝛿E = Gr IdE.
(∀y≠z∈F, ¬∃x∈R⃖(y), x ∈ R⃖(z)) ⇔ (∀(x,y)∈R, ∀z∈F, xRz ⇒ y = z)
For any function f and any y we define the fiber of y under f asf•(y) = {x∈Dom f | f(x) = y} = (Gr⃖ f)(y)
When f : E → F this defines a family f•F = (f•(y))y∈F of pairwise disjoint subsets of E:∀y,z∈F, f•(y) ∩ f•(z)
≠ ∅ ⇒ ∃x∈ f•(y) ∩ f•(z),
y = f(x) = z
⋃y∈F f•(y) = E
Im f = {y∈F | f•(y) ≠ ∅}.
R|A = {(x,y)∈R | x∈A} = ∐x∈A R⃗(x)
The direct image of a set A by a graph R isR⋆(B) = tR⋆(B) = ⋃y∈B R⃖(y) = {x | (x,y)∈R∧ y ∈ B} ⊂ Dom R.
For any family (Bi)i ∈ I of subsets of F, f⋆(⋂i∈I Bi) = ⋂i∈I f⋆(Bi) where intersections are respectively interpreted as subsets of F and E.
Set theory and Foundations of Mathematics | |
1. First foundations of mathematics | |
2. Set theory | |
2.1.
Formalization of set theory 2.2. Set generation principle 2.3. Tuples 2.4. Uniqueness quantifiers 2.5. Families, Boolean operators on sets⇦ 2.6. Graphs ⇨ 2.7. Products and powerset |
2.8. Injections, bijections 2.9. Properties of binary relations 2.10. Axiom of choice |
2.A. Time in set theory 2.B. Interpretation of classes 2.C. Concepts of truth in mathematics |
|
3. Algebra - 4. Arithmetic - 5. Second-order foundations |