1.3. Form of theories: notions, objects and meta-objects

The variability of the model

Each theory describes its model as a fixed system. But from the larger viewpoint of model theory, this is a mere «choice» of one possible model (interpretation) in a wide (usually infinite) range of other existing, equally legitimate models of the same theory. Now this fixation of the model, like the fixation of any variable, is but the elementary act of picking any possibility, ignoring any issue of how to specify an example in this range. Actually these «choice» and «existence» of models can be quite abstract. In details, the proof of the Completeness theorem will effectively «specify» a model of any consistent theory for the general case, but its construction will involve an infinity of steps, where each step depends on an infinite knowledge. Regardless this difficulty, the attitude of implicitly fixing a model when formally studying any mathematical theory, remains the standard way of interpreting it (except somehow for set theory as explained in 1.D).

Notions and objects

Each theory has its own list of notions, usually designated by common names, formally serving as the kinds of variables it can use ; each model interprets each notion as a set that is the common range of all variables of this kind. For example, Euclidean geometry has the notions of «point», «straight line», «circle» and more, and is usually expressed using a different style of variable symbol for each. The objects of a theory in a model, are all possible values of its variables of all kinds (the elements of all its notions) in this model.

One-model theory

Any discussion on several theories T and systems M that may be models of those T, takes place in model theory, with its notions of «theory» and «system» that are the respective kinds of the variables T and M. But when focusing on one theory with a fixed model, the variables T and M now fixed disappear from the list of variables. Their kinds, the notions of theory and model, disappear from the notions list too. This reduces the framework, from model theory, to that of one-model theory.
A model of one-model theory, is a system [T,M] which combines a theory T with a model M of T.

The diversity of logical frameworks

The role of a logical framework, as a precise version of (one-)model theory with its associated proof theory, is to describe : Here are those we shall see, roughly ordered from the poorest to the most expressive (though the order depends on the ways to relate them): We shall first describe the main two of them in parallel. First-order logic is the standard version of model theory, describing first-order theories we shall also call here generic theories. Set theory, which can encompass all other theories, can also encompass logical frameworks and thus serve itself as the ultimate logical framework as will be explained in 1.7.
Most frameworks manage notions as types (usually in finite number for each theory) classifying both variables and objects. Notions are called types if each object belongs to only one of them, which is then also called the type of the variables that can name it. For example, an object of Euclidean geometry may be either a point or a straight line, but the same object cannot be both a point and a straight line. But set theory will need more notions beyond types: classes, which will be introduced in 1.7.

Examples of notions from various theories

Theory Kinds of objects (notions)
Generic theories Pure elements classified by types to play different roles
Set theory Elements, sets, functions, operations, relations, tuples...
Model theory Theories, systems and their components (listed below)
 One-model theory    Objects, symbols, types or other notions, Booleans,
structures (operators, predicates), expressions (terms, formulas)...
Arithmetic Natural numbers
Linear Algebra Vectors, scalars...
Geometry Points, straight lines, circles...

Meta-objects

The notions of a one-model theory T1, normally interpreted in [T,M], classify the components of T («type», «symbol», «formula»...), and those of M («object», and interpretations of expressions of T there). But the same notions (even if from a different logical framework) can be interpreted in [T1, [T,M]], by putting the prefix meta- on them.

By its notion of «object», one-model theory distinguishes the objects of T in M among its own objects in [T,M], that are the meta-objects. The above rule of use of the meta prefix would let every object be a meta-object; but we will make a vocabulary exception by only calling meta-object those which are not objects: symbols, types or other notions, structures, expressions...

Set theory only knows the ranges of some of its own variables, seen as objects (sets). But, seen by one-model theory, every variable of a theory has a range among notions, which are meta-objects only.

Components of theories

In a given logical framework, the content of a theory consists in 3 lists of components of the following kinds, where those of each of the latter two kinds are finite systems using those of the previous kind.
Set theory and Foundations of mathematics
1. First foundations of mathematics
1.1. Introduction to the foundations of mathematics
1.2. Variables, sets, functions and operations
1.3. Form of theories: notions, objects, meta-objects
1.4. Structures of mathematical systems
1.5. Expressions and definable structures
1.6. Logical connectives
1.7. Classes in set theory
1.8. Binders in set theory
1.9. Quantifiers
1.10. Formalization of set theory
1.11. Set generation principle
Philosophical aspects
Time in model theory
Time in set theory
Interpretation of classes
Concepts of truth in mathematics
2. Set theory (continued) 3. Algebra 4. Model theory
Other languages:
FR : 1.3. Forme des théories: notions, objets, méta-objets